Nowcasting LSM Growth in Pakistan

Fida Hussain
Syed Kalim Hyder
Dr. Muhammad Rehman
SBP Working Paper Series

Editor: Sajawal Khan

The objective of the SBP Working Paper Series is to stimulate and generate discussions on different aspects of macroeconomic issues among the staff members of the State Bank of Pakistan. Papers published in this series are subject to intense internal review process. The views expressed in these papers are those of the author(s) not State Bank of Pakistan.

© State Bank of Pakistan.

Price per Working Paper (print form)

Pakistan: Rs 50 (inclusive of postage)

Foreign: US$ 20 (inclusive of postage)

Purchase orders, accompanied with cheques/drafts drawn in favor of State Bank of Pakistan, should be sent to:

Chief Spokesperson,
External Relations Department,
State Bank of Pakistan,
I.I. Chundrigar Road, P.O. Box No. 4456,
Karachi 74000. Pakistan.

Soft copy is downloadable for free from SBP website: http://www.sbp.org.pk

For all other correspondence:

Postal: Editor,
SBP Working Paper Series,
Research Department,
State Bank of Pakistan,
I.I. Chundrigar Road, P.O. Box No. 4456,
Karachi 74000. Pakistan.

Email: wps@sbp.org.pk

ISSN 1997-3802 (Print)
ISSN 1997-3810 (Online)

Published by State Bank of Pakistan, Karachi, Pakistan.
Printed at the SBP BSC (Bank) – Printing Press, Karachi, Pakistan
Nowcasting LSM Growth in Pakistan

Fida Hussain 1, Syed Kalim Hyder 2 & Dr. Muhammad Rehman 3

Abstract

This paper attempts to Nowcast Large-scale Manufacturing (LSM) growth in Pakistan, which is generally used as a potential proxy for economic activity in Pakistan. For this purpose, the dynamic factor and penalize regression models are used to extract the unique information set from a range of variables having close association with LSM. Given high seasonality induced volatility in LSM growth, we have also attempted to nowcast the trend and cycles separately. The estimation results show that the predicted LSM series is fairly tracking the actual LSM series. Penalize regression models perform remarkably well in tracing cycles in LSM growth. Whereas, dynamic factor model is more successful in tracing the underlying trend in LSM growth.

JEL Classification: C53, E43, E44, O53

Key Words: Nowcasting, Large-scale Manufacturing, Factor Model, Rigged Regressions

Acknowledgments

Authors are thankful to anonymous reviewers for their valuable comments and suggestions on the earlier draft. Views expressed in this write-up belong to the authors and these might be revised at any stage. All errors and omissions are the sole responsibility of authors.

1 Additional Director, Economic Policy Review Department, State Bank of Pakistan, Karachi (fida.hussain@sbp.org.pk)
2 Senior Joint Director, Economic Policy Review Department, State Bank of Pakistan, Karachi (kalim.hyder@sbp.org.pk)
3 Joint Director, Economic Policy Review Department, State Bank of Pakistan, Karachi (muhammad.rehman@sbp.org.pk)
Non-technical Summary

Nowcasting has recently gained popularity especially among policymakers in the backdrop of delays in official release of data on key economic variables and need to take appropriate corrective actions in the fast changing domestic and global economic conditions. Nowcasting is a statistical technique that helps in getting an *early estimate or near term forecast* of a data series (the target variable), before its official release. The technique utilizes information contained in a set of variables – either a sub-component or that move closely with the target variable. This technique is particularly used to nowcast quarterly GDP but can be applied to get early estimate of any such economic variable.

In case of Pakistan, though quarterly GDP data is not available and analysts and policymakers use Large-scale Manufacturing (LSM) as a proxy. LSM data is published on a monthly basis but is available with a lag of up to seven or eight weeks. In this backdrop, an early estimate could provide updated information about real economic activity and timely input for forecasting of a range of variables including inflation, imports, private sector credit, money growth, tax revenue, domestic demand, etc.

In this paper, we have used statistical methods that extracts latest information about LSM from a range of indicators that are readily available and have strong association with LSM. Specifically, we have used dynamic factor and penalize regression models to separate unique and common variations. The best utilization of both type of variations are used to approximate the latest value of LSM growth. We have also approximated the underlying trend and deviation around that trend (cycle). Our findings show that penalize regression models perform remarkably well in tracing cycles in LSM growth. The dynamic factor model almost accurately capture underlying trend, but not the cycles.
1. Introduction

As actual quarterly or annual GDP data is generally released with a considerable lag, policymakers and analysts keep track of a range of macroeconomic variables to make informed judgments about future state of economic activity. In this context, the policymakers have been putting lot of efforts to narrow the information gap by tracking a range of indicators. Recently, a number of studies have attempted to get a kind of early estimate for GDP (before its release) using econometric techniques. These techniques use information on macroeconomic variables most related with GDP for which more frequent data is available with a minimum lag to produce, kind of, early estimates for the target variable.

This technique, similar in nature with leading indicators’ approach, is known in the literature as nowcasting. Banbura et al. (2013) and Tiffin (2016) define nowcasting in most simple terms as prediction of the present, near term future, and very recent past. Kliesen and McCracken (2016) called nowcast as “tracking forecasts” as they observed that many central banks track latest information on a range of economic indicators to assess the direction and level of economic activity. The literature shows that use of nowcasting is not limited to forecast GDP, but is also being used as a tool to forecast other macroeconomic variables like inflation, investment, consumption, unemployment, etc. for which data is released with a lag.1

Tiffin (2016) records that nowcasting has become a routine at many central banks. Some of the leading central banks including Reserve Bank of New Zealand, Federal Reserve, Bank of England, Central Bank of Turkey, Bank of Canada, to name a few, use nowcasting to get estimate for quarterly GDP well before its official release.2

In case of Pakistan, GDP data is not published on quarterly basis. The first estimate of GDP for a fiscal year is released by the close of the same year. Large-scale Manufacturing (LSM) is the only major component of GDP on which data is available on a monthly basis, but with a lag of about two months from the end of reference period.3 LSM is also often used as proxy for ongoing trends in real GDP during a year.

Therefore, we have chosen LSM as the target variable to start with. To best of our knowledge, this is first such attempt in case of Pakistan. The data on large number of LSM components and other most related variables is usually available within 15 to 20 days after the end of a month. Since LSM is used as a proxy for GDP growth, nowcast or an early estimate for LSM growth could also be used as input for projecting/forecasting other key macroeconomic variables like credit to private sector, tax revenue, trade, inflation, money growth, etc.

We have used factor models and penalized regression techniques to nowcast LSM growth in Pakistan. We have chosen 18 data series, either component of LSM or have strong association with LSM. The data spans from first quarter of FY00 to the third quarter of FY17. To filter information from this set of variables to get near term forecast or early estimate for LSM growth, we have used dynamic factor model, ridge, lasso and elastic net methods. The estimates show that all these techniques, except for dynamic

1 For example, see Giannone et al. (2008); Chadwick and Şengül (2015) and Modugno (2011)
2 Respectively, see Higgins (2014); Bell et al. (2014); Akkoyun and Günay (2012) and Granzierà et al. (2013).
3 For example, December 2016 LSM data is released by second or third week of the February 2017.
factor model, perform reasonable well in predicting LSM growth (and the cycles and trends separately) in next quarter. The dynamic factor models almost fail to trace the cyclical part.

The rest of the paper is organized as follows. The section II discusses the estimation methodologies applied in this paper. Section III describes the structure of GDP data, choice of target variable and macroeconomic variables used to nowcast LSM and. Section IV concludes the paper.

2. Methodology
Optimal utilization of available information is central to nowcast techniques. However, some variables or groups of variables in the available information set may provide similar conclusions due to strong collinearity within these variables. To address this empirically, while ensuring maximum utilization of all available information, the data series are needed to be filtered to get a unique or a common solution. Factor models and penalize regression methods are the two popular techniques used in the literature for this purpose. These methods help to extract information from a large set of high frequency data having close association with the target variable, and are strongly correlated amongst themselves as well.

2.1 Factor Models
There are many techniques in literature to extract common factors. Chamberlain and Rothschild (1983), factor models are most widely used for nowcasting economic variables. In this study, we have followed Stock and Watson (2002; 2006) and Giannone et al. (2008) which used principal component (PC) method to extract the factors. The main reasons for choosing PC method for estimation of factors are: 1) PC gives consistent estimates of true latent factors, 2) PC based forecasts are asymptotically efficient, and 3) the results are robust.4

In view of the fact that we are using a large set of data to Nowcast LSM, this can potentially create over-parameterization problem in the model. One of possible ways to solve the problem is to use “factor models”. These models transform potential explanatory variables in few unobserved factors, which confine the correlation among the variables. This method uses these factors instead of original series as explanatory variables.

The most famous method to extract unknown factors from the large set is principal component analysis. This method linearly projects correlation matrix of explanatory variables to orthogonal linear combination of the underlying indicators or principal components. In this procedure, set of explanatory variables, say X_t of dimension m, is transformed into a cross-correlation matrix, say Z. Then we find eigenvectors of Z, say P. The Eigen vector matrix P actually transform matrix X_t into orthogonal linear combinations known as principal components:

$$P'.X_t = PC_t$$

Observe that Eq. (1) ends up with m principal components (PCs). Each of the PC has some power to explain the overall set of data. However, different PCs have different explanatory power. Their explanatory power can be determined by corresponding eigen values of Z. Therefore, sum of eigen

4 For more details, see Stock and Watson (2002).
values is used as selection criterion for maximum number of PCs that are used in the model. The criterion is defined as follows:

\[\text{sum of Descending Eigen values of } \mathbf{Z} \cong 0.9 \]

Corresponding to these Eigen values we select Eigen vectors and thereby PCs. In order to relate PCs with LSM growth, \(Y_t \), we need a bridge equation framework. In our case bridge equation has following representation, which we call a factor model.

\[Y_t = \alpha + \Lambda_t \mathbf{PC}_t + \epsilon_t; \quad \epsilon_t \sim i.i.d N(0, \Sigma) \]

In Eq. (2) we have made one innovation. In this innovation we have supposed time variation in factor loadings of \(\mathbf{PC}_t \). This innovation allows us to incorporate policy impact, internal or external shocks and structural impacts. We model time variation of factor loadings as a random walk. Therefore Eq. (2) can be re-written as:

\[Y_t = \alpha + \Lambda_t \mathbf{PC}_t + \epsilon_t; \quad \epsilon_t \sim i.i.d N(0, \Sigma) \]
\[\Lambda_t = \Lambda_{t-1} + \nu_t; \quad \nu_t \sim i.i.d N(0, \Sigma) \]

This model is known as dynamic factor model. Eq. (3) and Eq. (4) constitute a state space model. Here Eq.(3) is a measurement equation and Eq. (4) is a transition equation. This equation can be estimated by Kalman filter.

2.2 Penalize Models

Penalize regression methods are estimation techniques used in the environment of high collinear regressors. High correlation among variables forces to consider statistical limitations of the linear regression models, such as co-linearity and over fitting. These limitations might have large influence on out of the sample stability of estimates and in-sample validation of the parameters. The penalize models try to reduce the variance of estimates (relative to OLS estimates) by imposing some restrictions on coefficient of predicting series and thereby improve forecasts (see e.g. Tiffin (2016), Elmer (2011), Schneider and Wagner (2008) etc).

Following Tiffin (2016), we have used three penalize regression methods that take care of co-linearity problem and dimensionality problem. These include:

1) Lasso regression method,
2) Ridge regression method, and

Let us analyze the co-linearity problem in OLS estimation and one among many possible solutions (penalize estimation technique) in more formal way. As we know that OLS estimation technique minimizes residual sum of square (RSS). So minimization results can be written as:

\[B = (X_t'X_t)^{-1}X_t'Y_t \]
Since variables in X_t are supposed to be highly collinear, therefore $X_t'X_t$ will become nearly singular and making it difficult to invert. Penalize regression adds a positive constant, say λ, to the diagonal of $X_t'X_t$ matrix and make the matrix $X_t'X_t$ non-singular. In new setup Eq. (5) can be re-written as:

$$B = (X_t'X_t + \lambda I)^{-1}X_t'Y_t$$

(6)

It means that we are basically minimizing following function with respect to B:

$$\left(\text{Min}_B \right) \Gamma = \sum_{t=1}^{T} (Y_t - B_0 - \sum_{i=1}^{n} x_{i,t} B_i)^2 + \lambda \sum_{i=1}^{n} B_i^2$$

(7)

Where $x_{i,t}$ are variables in X_t and B_i are parameters in vector B.

Eq. (7) can be rewritten as:

$$\left(\text{Min}_B \right) \Gamma = RSS + \lambda \sum_{i=1}^{n} B_i^2 ; \ 0 \leq \lambda \leq 1$$

(8)

In the more formal form:

$$\left(\text{Min}_B \right) \Gamma = RSS + \text{Penalty} \left(\hat{B} \right) ; \ 0 \leq \lambda \leq 1; \ (9)$$

Here λ is a tuning parameter or penalty term on the sum of squares of parameters B_i. If $\lambda = 0$, the minimization problem reduces to OLS regression analysis, whereas $\lambda > 0$ means more penalty on the parameters for making them non-zero. So values of λ decides between fit of the model, i.e. RSS and size of the parameters. Now the question is how to choose the critical value of the parameter λ? This is done by a re-sampling technique known as cross validation. In this technique we divide the whole sample into K equal sets. We take one part of the sample and call it validation sample and rest of $(K-1)$ parts as training sets. Now, for given value of $\lambda \in (0, 1)$, we estimate the model for validation sample and then forecast the values in the training sets and estimate forecast errors. This process is repeated for all possible values of $\lambda \in (0, 1)$ and all validation and training sets. This gives us cross validation curve function. We choose λ, that minimizes this cross validation curve.

The penalty terms in Eq. (9) can be of different nature. It depends upon the objective of the researcher. The penalty term that we have defined in Eq. (8), is known as ridge penalty.\(^5\) In ridge regression, we minimize RSS along with sum of square of parameters.

Penalty term can also be defined as absolute value of the parameters. This penalty is known as Lasso penalty.\(^6\) The Lasso regression problem can be defined as:

$$\left(\text{Min}_B \right) \Gamma = RSS + \lambda \sum_{i=1}^{n} |B_i| ; \ 0 \leq \lambda \leq 1; \ (10)$$

Ridge regression gives better results when some of the variables with better forecasting ability have values closer to zero. Lasso regression has ability to discard some of non-important variables. So it gives

\(^5\) Ridge regression in the literature is first introduced by Hoerl and Kennard (2000).

\(^6\) The LASSO estimator is first introduced by Tibshirani (1996).
us a parsimonious model. We can combine the virtues of both penalties, in a single model known as elastic net model. The structure of the model is as follows:

$$\min_B \Gamma = RSS + \lambda \sum_{i=1}^n \left[(1 - \alpha)B_i^2 + \alpha |B_i| \right] ; \quad 0 \leq \lambda \leq 1; \alpha > 0; \quad (9)$$

Elastic net model is a weighted sum of lasso and ridge penalties. We estimate this parameter α i.e. weight parameter of penalties, in cross validation process. We start process for $\alpha = 1$ and perform the k-fold cross validations for all $\lambda \in (0 \ 1)$. This gives us validation curve function. We repeat this process for $\alpha = 2,3, \ldots, s$; where s is a sufficient large number. The process generates validation curve space. We select those α's and λ's that minimizes the validation curve space. Estimation under optimum parameters gives us a parsimonious model which has better predicting properties.

Before using the above methods, we first transformed high frequency data (monthly data) into low frequency data (quarterly data). Since transformation techniques for stock and flow variables are different, therefore, we have used two different transformation techniques.

Suppose variable, F_t^q, is quarterly counterpart of its monthly variable z_t^m. For the flow variables, like CPI etc., quarterly variable is estimated as;

$$F_t^q = \frac{1}{3} \sum_{k=t-2}^t z_k^m$$

Similarly for stock variables;

$$S_t^q = \sum_{k=t-2}^t z_k^m .$$

It is here important to note that, after transformation, we seasonally adjusted the series and calculated growth rates.7

3. Data and Estimation Results

Pakistan Bureau of Statistics (PBS) is responsible for compilation and publication of National Income Accounts (NIA) of Pakistan. PBS compiles NIA on annual basis and publishes provisional growth estimates by close of the fiscal year. These estimates are based on the actual data of first nine months of the fiscal year, that is, July-March. The revised full fiscal year data is released with a lag of one year.

Although PBS publishes data on some of the components of GDP on a monthly basis, these are usually available with a considerable lag. For example, data on large-scale manufacturing index is available on monthly basis with a lag of about two months. Similarly, data on production of minerals, oil and gas production and electricity generation is published on monthly basis but is available with a lag of more than two months.

As Pakistan does not have quarterly GDP data, we use quarterly LSM growth as the target variable. We aim to get an estimate for LSM growth for the current month and quarter well before its official release, benefitting from the early release of data on a range of LSM components and those having strong

7 For seasonal adjustment, we have used multiplicative seasonal adjustment procedure.
association with the LSM. We include the variables for which data is published by PBS itself or the associations/institutions that provide data to PBS for compilation and releases. We also consider variables that State Bank of Pakistan (SBP) and/or financial markets monitor to assess the state of economic activity. For example, the data on confidence surveys, interest rate spreads, credit, and external sector indicators on which the data is compiled and published by SBP. The list of input variables with frequency and timings of the release is given in Annexure 1.

The timeliest data is on sales variables and financial markets like cement, automobile, and oil sales, interest rate spread, commodity prices and inflation that are available within five to six days from the reference period. The data on imports, export, remittances and private sector credit is available within two to three weeks period from the reference period. The timeline for data on tax collection, an important indicator of LSM performance, is not fixed and its release date varies from a week to three weeks.

Given that some of the series are relatively noisy in Pakistan, LSM being one of them, we have seasonally adjusted these before calculating year-on-year growth rates. All the data series are monthly, starting from July 2004.

The plot of predicted LSM series using dynamic factor model and penalize regression model (lasso, ridge and elastic net) shows that all the technique perform reasonably well in tracking the overall LSM growth (Figure 1).
With the objective to explore which technique perform better in tracing the underlying trajectory and cyclical part of the LSM, all the estimations are repeated on trend and cycles of LSM index\(^8\). As depicted in Figure 2, all models perform better in tracing the LSM growth trajectory. However, dynamic factor models almost fail to trace the cyclical part of the series (Figure 3).

\(^8\) For the estimation of trend and cycles, we have used Fully Modified HP filter by Choudhary et al., 2014.
As a robustness check, we have estimated all these models on quarterly data (see Annexure 2). The results are not very different from the estimates based on monthly data.

Performance of the models is evaluated using RMSE criteria, which shows that the dynamic factor models perform the best in case of capturing movement in overall and trend in LSM. However, this model fails in tracing the cycles. Lasso technique performs better in tracing the cycle.

Table 1: Root Means Square Errors of LSM Nowcasting

<table>
<thead>
<tr>
<th>LSM</th>
<th>Ridge</th>
<th>Lasso</th>
<th>Elastic net</th>
<th>Dynamic Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>42.3</td>
<td>43.9</td>
<td>43.9</td>
<td>31.8</td>
</tr>
<tr>
<td>Trends</td>
<td>11.6</td>
<td>11.0</td>
<td>11.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Cycle</td>
<td>15.6</td>
<td>13.8</td>
<td>28.9</td>
<td>94.6</td>
</tr>
</tbody>
</table>

Source: Authors’ estimates

4. Conclusion

Nowcasting or near term forecasting is designed to reduce the information lags of data dissemination. Nowcasting is an emerging technique and many central banks are using it in their routine tasks. This paper is an effort to nowcast LSM growth in Pakistan. LSM is available at relatively higher frequency (monthly) than the actual GDP (annual) and is considered best indicator of economic activity. The process of nowcasting starts with the identifying determinants or variables having close association with LSM, which are released earlier than LSM. These determinants include production of important sectors, prices, credit, interest rates and tax collection, external trade and inflows. There is a possibility that these determinants may be highly correlated amongst themselves and may not provide unique set of information. Therefore, conventional forecasting techniques have limited capacity to resolve this issue.

Search for the unique information by filtering collinear information and nowcasting of LSM is carried out by using the dynamic factor model and penalize regression models. Dynamic factor model pre-filter the determinants by using the principal component method and the penalize regression models treat collinearity during the estimation process. These techniques are utilized to nowcast overall LSM growth along with its underlying trend and cycle. Exogenous and policy induced shocks are main reason for Nowcasting cyclical and trend components of LSM growth. Based on the forecast evaluation indicators, all the techniques perform better in predicting the overall LSM growth. Dynamic factor model performs the best in tracing the underlying trend of LSM growth but it fails in nowcasting the cyclical part. The performance of penalize methods is same in case of trend and cycles.
References

Appendix

<table>
<thead>
<tr>
<th>No</th>
<th>Series</th>
<th>Unit</th>
<th>Frequency</th>
<th>Delays</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Large-scale manufacturing index</td>
<td>Indices</td>
<td>Monthly</td>
<td>6 to 7 weeks</td>
</tr>
<tr>
<td>2</td>
<td>Cement sale</td>
<td>Million tons</td>
<td>Monthly</td>
<td>1 week</td>
</tr>
<tr>
<td>3</td>
<td>Automobile sale</td>
<td>Units</td>
<td>Monthly</td>
<td>1 week</td>
</tr>
<tr>
<td>4</td>
<td>Private sector credit</td>
<td>Billion rupees</td>
<td>Weekly</td>
<td>3 weeks</td>
</tr>
<tr>
<td>5</td>
<td>Wholesale price index</td>
<td>Indices</td>
<td>Monthly</td>
<td>1 to 2 days</td>
</tr>
<tr>
<td>6</td>
<td>Imports</td>
<td>Million US$</td>
<td>Monthly</td>
<td>2 weeks</td>
</tr>
<tr>
<td>7</td>
<td>Exports</td>
<td>Million US$</td>
<td>Monthly</td>
<td>2 weeks</td>
</tr>
<tr>
<td>8</td>
<td>Consumer price index</td>
<td>Indices</td>
<td>Monthly</td>
<td>1 to 2 days</td>
</tr>
<tr>
<td>9</td>
<td>Real effective exchange rate index</td>
<td>Indices</td>
<td>Monthly average</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Oil prices</td>
<td>Rupees/bbl</td>
<td>Daily/monthly avg.</td>
<td>1 to 2 days</td>
</tr>
<tr>
<td>11</td>
<td>Workers’ remittances</td>
<td>Million US$</td>
<td>Monthly</td>
<td>2 weeks</td>
</tr>
<tr>
<td>12</td>
<td>Foreign direct investment</td>
<td>Million US$</td>
<td>Monthly</td>
<td>1 week</td>
</tr>
<tr>
<td>13</td>
<td>Total tax collection</td>
<td>Billion rupees</td>
<td>Monthly</td>
<td>2 weeks</td>
</tr>
<tr>
<td>14</td>
<td>Direct taxes</td>
<td>Billion rupees</td>
<td>Monthly</td>
<td>2 weeks</td>
</tr>
<tr>
<td>15</td>
<td>Indirect taxes</td>
<td>Billion rupees</td>
<td>Monthly</td>
<td>2 weeks</td>
</tr>
<tr>
<td>16</td>
<td>Sales taxes</td>
<td>Billion rupees</td>
<td>Monthly</td>
<td>2 weeks</td>
</tr>
<tr>
<td>17</td>
<td>Federal excise duty</td>
<td>Billion rupees</td>
<td>Monthly</td>
<td>2 weeks</td>
</tr>
<tr>
<td>18</td>
<td>Customs duties</td>
<td>Billion rupees</td>
<td>Monthly</td>
<td>2 weeks</td>
</tr>
<tr>
<td>19</td>
<td>Interest rate spread (1Y-3M)</td>
<td>Percentage</td>
<td>Monthly</td>
<td>1 day</td>
</tr>
</tbody>
</table>
Annexure 2: Quarterly Nowcast of LSM Growth (overall, trend and cycles)