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Muhammad Nadim Hanif, Javed Iqbal, and M. Ali Choudhary  
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Abstract 

Business cycle estimation is core of macroeconomics research. Hodrick-Prescott (1997) filter, (or HP 

filter), is the most popular tool to extract cycle from a macroeconomic time series. There are certain 

issues with HP filter including fixed value of λ across the series/countries and end points bias (EPB). 

Modified HP filter (MHP) of McDermott (1997) attempted to address the first issue. Bloechl (2014) 

introduced a loss function minimization approach to address the EPB issue but keeping lambda fixed 

(as in HP filter). In this study we marry the endogenous lambda approach of McDermott (1997) with 

loss function minimization approach of Bloechl (2014) to analyze EPB in HP filter, while intuitively 

changing the weighting scheme used in the latter. We contribute by suggesting an endogenous 

weighting scheme along with endogenous smoothing parameter to resolve EPB issue of HP filter. We 

call this fully modified HP (FMHP) filter. Our FMHP filter outperforms a variety of conventional 

filters in a power comparison (simulation) study as well as in observed real data (univariate and 

multivariate) analytics for a large set of countries.  

Key Words: Business Cycle, Time Series, Fully Modified HP Filter, End Point Bias in HP Filter, 

Simulation, Cross Country Study. 
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Non-technical Summary 

Hodrick-Prescott (1997) filter is the most popular tool to extract trend and cycle components from a 

time series. There are certain issues with HP filter including i) fixing the value of smoothing 

parameter (lambda) across the series/countries and ii) end points bias (EPB) in the extracted cycle 

component. Modified HP filter (MHP) of McDermott (1997) attempted to address the first issue and 

suggested estimating lambda endogenously. Issue of EPB is still unresolved despite some suggestions 

like extrapolating the subject time series. EPB issue originates from asymmetrical weights for 

significant number of terminal observations in HP filtering process. Bloechl (2014) introduced a loss 

function minimization approach to address the EPB issue but keeping lambda fixed. He suggested 

varying ‘number’ of end observations upon which different weights are applied.   

In this study we marry the endogenous lambda approach of McDermott (1997) with loss function 

minimization approach of Bloechl (2014) to analyze EPB in HP filter, while suggesting some 

innovative changes in weighting scheme used in the later. We contribute by suggesting an endogenous 

weighting scheme, which is different from Bloechl (2014), along with endogenous smoothing 

parameter and reduce EPB in HP filter. We call this fully modified HP (FMHP) filter.  

Our FMHP filter outperforms the conventional filters (like HP, CF filters and wavelet analysis with 

extrapolated data) in a power comparison study. We also apply FMHP filtering upon 3 core 

macroeconomic time series - namely real income, consumption and investment - for annual 

(quarterly) data of a large number of countries and find that our FMHP filter lowers the estimated loss 

compared to other filters drastically. FMHP filter performs better than HP filter in moments’ analytics 

of detrended real income, consumption and investment series.  
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1. Introduction 

Business cycle estimation is considered as the core of macroeconomics research. Hodrick-Prescott 

(1997) filter, (or HP filter), is the most popular and widely used tool to extract cyclical component 

from a macroeconomic time series. However, there are certain issues with HP filter which are well 

known in the literature [see McDermott (1997), Kaiser and Maravall (1999), Ekinci et al. (2013), 

Choudhary et al (2014), and Bloechl, (2014)] including (i) fixing the value of smoothing parameter, 

i.e. λ (lambda), across the series/countries and (ii) end points bias (EPB) in the extracted cyclical 

component.  

Modified HP filter (MHP) of McDermott (1997) attempted to address the first issue and suggested 

estimating smoothing parameter (lambda) endogenously. Choudhary et al (2014) assessed MHP filter 

and found that it performs better than a list of competing filtering approaches, including HP filter, for 

detrending time series’ and that the filtering method matters in actual/observed macroeconomics time 

series univariate as well as multivariate data analytics. Issue of EPB is still unresolved
1
.  

EPB contaminates the estimated trend with the cyclical component and thus underestimate the 

cyclical component during both the recovery as well as recession. It also results in downward biased 

standard error of the estimated cyclical component. A downward biased standard error of the 

estimated cyclical component may give impression of a stable economy, and the underestimated 

cyclical component during booming/receding economy may delay the necessary stabilization 

measures by economic managers.   

Essentially, root of EPB issue lies in asymmetrical weights for significant number of terminal 

observations in HP filtering process (Figure 1 of Appendix B).  Bloechl (2014) introduced a loss 

function minimization approach to address the EPB issue but keeping lambda fixed as in HP filter.  

He suggested varying number of end observations upon which different weights are applied. Bloechl 

(2014) found estimated loss, with his suggested weighting scheme, to be lower than that for HP filter 

approach.   

In this study we marry the endogenous lambda approach of McDermott (1997) [studied in Choudhary 

et al (2014)] with the loss function minimization approach of Bloechl (2014) to address EPB in HP 

filter, along with suggesting some innovative changes in weighting scheme used in the later. We 

contribute by suggesting an endogenous weighting scheme, which is intuitively better than used in 

Bloechl (2014), along with endogenous smoothing parameter (as in McDermott, 1997) to resolve EPB 

issue of HP filter. We call this fully modified HP (FMHP) filter.  

Our FMHP filter outperforms completely the conventional filters like Hodrick and Prescott (1997) [or 

HP], wavelet analysis based filtering with extrapolated data (see Iqbal and Hanif, 2017) [or WAN-

WED], and Christiano and Fitzgerald (2003) [or CF] in a power comparison (simulation) study (Table 

1, Appendix A) employing data generating models used in Choudhary et al (2014). End point 

performance of our FMHP filter is specifically evaluated (compared to HP, WAN-WED and CF 

filters) and found best (Table 2, Appendix A).  

We also apply FMHP filtering  upon three core macroeconomic time series - namely real income (Y), 

consumption (C) and investment (I) - for annual (quarterly) data of 70 (33) countries. In observed data 

                                                           
1
 Some studies like (Kaiser and Maravall, 1999) suggested extrapolating the subject time series before applying 

the HP filter as a temporary solution. Extrapolated observations in themselves would be biased to the extent the 

goodness of fit will not be achieved in modeling the underlying series of interest. 
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application we find that our FMHP filter lowers the estimated loss drastically compared to those 

obtained using Bloechl (2014) as well as HP filter (Tables 3a and 3b of Appendix A and Figures 3 and 

3a of Appendix B). Research based on observed data of real income, investment and consumption 

also shows that the autoregressive properties and multivariate analytics of cyclical components 

depend upon filtering technique applied and that our FMHP filter performs better (Table 4, Table 5, 

Appendix A). 

Remainder of this study is organized as follows: In Section 2, we explain what is inside HP filtering 

process. In fact we set locale here to show where the issues in the HP filter are which we explain in 

the next section, focusing on end point bias. Some of the proposal to address EPB are discussed and 

critically evaluated in Section 4. In Section 5 we propose our FMHP filter which lowers the EPB 

drastically as shown in the later part of this section in simulation and empirical applications. Section 6 

is for conclusion.  

2. What is in the HP Filter?  

Hodrick and Prescott (1997) filter decomposes a time series      in to trend (  ) and cyclical (   ) 

components so that 

                          (1) 

The trend component     is estimated by solving the minimization problem  

            
                         

    
   

 
        (2) 

In this optimization problem, there is a trade-off between the ‘goodness of fit’ and the ‘degree of 

smoothness’ that depends on the value of λ. The solution to the minimization problem in (2) for    is  

                   (details are in Appendix C)     (3) 

Where       where         is a (T-2) T matrix with elements as given below 

     
                    

                                 
                               

  

Hodrick and Prescott (1997) applied this procedure on quarterly seasonally adjusted GDP data of 

USA by fixing
2
 the value of   at 1600 to estimate cyclical (transitory) and trend (permanent) 

component.   

3. Issues with HP Filter and its Use 

There are certain issues with HP filter as have been highlighted in the literature from time to time 

(McDermott (1997), Kaiser and Maravall (1999), Mise et al (2005), Ekinci et al. (2013), Choudhary et 

al (2014), and Bloechl (2014)). We discuss two of the issues with HP filter in the following 

subsections.  

                                                           
2
 Based upon their view that a 5 percent cyclical component is moderately large, as is one-eighth of 1 percent 

change in the (real GDP) growth rate in a quarter. This led them to select smoothing parameter for quarterly data 

as 1600.  
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3.1. Fixed value of Smoothing Parameter 

One of these issues pertains to the way HP filter has been put in practice by empirical researchers. 

Unfortunately, it has become a convention in empirical economic research to use        (100) for 

smoothing quarterly (annual) time series across the economies / series. We are of the view that   must 

be endogenous (to the actually observed data) as has been argued in McDermott (1997) and validated 

in Choudhary et al. (2014). Thus, it could be different even for USA GDP in case of time period 

different from Hodrick and Prescott (1997) analysed. This is because the value of the smoothing 

parameter of a given series relies on the underlying behavior of economic agents from where its 

dynamical properties originate, and this fact cannot be ignored.  

Modified HP filter of McDermott (1997) relaxes the assumption of fixed λ as explained in Choudhary 

et al (2014). The idea of McDermott (1997) is to estimate the trend component as in equation (3) by 

excluding a single data point at a time and selecting a value of λ which gives best fit of the left out 

data point. This ‘leave out method’ is applied to all the data points one by one. The optimal value of λ 

can be obtained by minimizing the following gross cross validation (GCV) function with respect to λ. 

    λ        
  

λ
           λ  

  
                                                               (4) 

In this way smoothing parameter becomes endogenous (to observed data dynamics). 

3.2. End Point Bias 

The other issue pertains not to the way HP filter is being used in practice but lies in the construction 

of HP filter. In order to carry out a trend-cycle decomposition of a time series at a given date, HP 

filtering requires information about the behavior of the series at prior as well as at later dates. Absence 

of end and start observations (as is evident from equation 2) poses difficulties at the start and end of 

the sample resulting in changes in terminal points weights and thus causing substantial distortions in 

cyclical component at both ends. This is what has been termed as end-point bias in the literature 

(Baxter and King, 1999 [or BK], Mise et al (2005) and Auria et.al, 2010). We explain this problem in 

following with the help of a figure (Figure 1, of Appendix B).  

HP filter is a symmetric filter in the sense that the estimator      (equation 3) is the weighted sum of 

both lags and leads of   . Due to the missing values at both ends, the whole weighted matrix B in 

equation (3) is distorted with highest effect on boundaries and lowest at the middle of the data set 

(Baxter and King, 1999). This can be seen from Figure 1 (Appendix B), where we plot the ‘weighting 

vectors’ corresponding to     for a HP-filter with        applied to a series with 50 data points. We 

can see that as we go to the middle of data set we have symmetric weighting vector while towards the 

both ends the filter weights become more and more asymmetric. It can be observed that the highest 

weight at the margins is disproportionately large compared to those at the middle (of the time series). 

Hence the estimation at the end points is effected by disproportionately large weights at terminal 

points.  This behavior of HP filter weighting scheme causes biasness at (up to 20 observations on
3
) 

both ends in the extracted cyclical component.   

                                                           
3
 According to our own simulation exercise.  
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To further understand the distortion at the terminal points of the estimated trend component of time 

series using HP filter, we can consider HP filter in frequency domain (as in Bloechl (2014) for 

example).   

Going back to equation (3) we see the filter weights are contained in the matrix              , 

where B is symmetric matrix and its    h row contains the weights for the estimation     

          
 
                   (5) 

Where     is the   h  element of the   h  row of B. These weights have symmetric structure in the 

middle
4
 and change near the boundaries

5
.  

In the frequency domain a time series is interpreted as an overlap of oscillations with different 

frequencies (Harvey and Jaeger (1993) and Hamilton (1994)) where the trend as a long run behavior 

(of a series) is supposed to consist of those oscillations with high periodicity. In the estimation of 

trend component, HP filter extracts oscillations with high periodicities and eliminates oscillations with 

lower periodicities. This behavior can be explained by a gain function. By using filter weights in 

matrix B for a given value of lambda, (following Mills, 2003) the gain for estimation      at different 

frequency level can be calculated as  

     λ                      
      

 
                    

      
 
                          (6) 

Bloechl (2014) explained that this gain can be interpreted as a factor by which the amplitude of an 

oscillation with a certain frequency is decreased or increased by a filter. Taking T=50 we plotted this 

gain      in Figure 2 (Appendix B) for t=1, 3, 25, 26, 47, and 49. By construction, weights in HP filter 

are different for middle and terminal points. We can see in this figure how gain is affected by 

changing the weights (i.e. for middle and terminal points): for the estimations at the middle (like, 25
th
 

and 26
th
) we see very similar gain as these depend upon an almost equal weight structure and the gain 

starts to change as we move to the boundaries (like for the 1st, 3rd, 47
th
 and 49

th
 estimations). Thus, 

for the estimation at end points the high frequencies cannot be completely eliminated anymore which 

causes an increasing volatility in the trend component. So the trend estimates at terminal points 

contain part of the cyclical component and are thus distorted
6
. To quantify the distortion at the 

terminal data points in trend component Bloechl (2014) introduced a ‘loss measure’ in the form of 

deviation of gain function of certain estimation      from the one at the middle (centre) where we know 

distortion is negligible. This loss is what one would like to minimize so that the distortion at the 

terminal points is not more than that at the middle of the dataset (i.e., negligible). If      λ  denotes 

the gain for frequency   and parameter λ for the centre estimation      , where c=T/2, and       λ  is 

the gain for estimation     then the loss function is 

    λ          λ        λ  
  

                                              (7) 

We use  =(0, 0.1, 0.2, . . ., )/ . Here, n is number of elements in   and   is the distance between the 

element in   i.e.              . Calculating the loss for t=1, 2, . . .,T gives an overview of 

distortions at the estimations (for the trend) on terminal points. For T=50, loss is significantly high at 

                                                           
4
 The ideal weighting scheme is at the centre of the data set only as shown in the Figure 1 of the Appendix B.  

5
 Again, we have shown this in Figure 1 of Appendix B. 

6
 Resulting in larger than should be standard deviation in trend component (and hence lower than should be 

standard deviation in cyclical component).  
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terminal points when we use HP filter, with lambda=100 (as shown in Figure 3 of Appendix B). To 

eliminate the EPB, the ideal weighting scheme would be the one which gives zero overall loss. We 

critically evaluate the weighting scheme of Bloechl (2014) and propose our weighting scheme to 

address the EPB in section 4 and 5 respectively. 

4. Review of Earlier Proposals in the Literature to Address EPB in HP Filtering 

There are various ways proposed in the literature to circumvent the end point bias problem described 

above and a few to escape the issue (for example Mohr (2005), Kaiser and Maravall (1999), Denis et 

al (2002), Bruchez (2003), and Bloechl (2014)). One way to handle this issue is to extend data from 

both ends (Mohr (2005)) before applying HP filter to decompose the time series of interest. There are 

different ways to extend data. Kaiser and Maravall (1999) and Denis et al (2002) suggested to use 

ARIMA (p,d,q) model for extrapolating the data at both ends. Mise et al (2005) also suggested using 

forecast-augmentation approach to mitigate EPB. In a recently published study, Iqbal and Hanif 

(2017) assessed the performance of various filtering approaches [like MHP filter, wavelet analysis 

(WAN) based filtering and empirical mode decomposition (EMD)
7
] to manage EPB by extrapolating 

the underlying time series. While using forecasting-augmentation approach, they observed that the HP 

filter performed worse (at end points), than other filtering techniques studied. We think this is not a 

proper solution of end point biasness in HP filtering as the choice of data generating process (DGP) 

for extending the subject series in itself could be biased simply because we do not know the true DGP 

of the series of interest.  Bruchez (2003) criticized extending the time series to circumvent the EPB in 

HP filtering process. He argued that unexpected behavioural changes in the underlying series will not 

be captured by such extrapolations.  

Bruchez (2003) proposed a new mechanism of changing the weighting scheme in the HP filter: for 

certain values of t,    term appears less often in the second part of equation (2) so the corresponding 

value of λ for those values of t should increase. More specifically, since first and last value appears 

only once, 2nd and 2nd last value appears twice and all other values appears three times in second part 

of equation (2), he proposed to multiply lambda by 3 for first and last values, and by 3/2 for second 

and second last values. We believe that Bruchez (2003) approach to handle EPB also has 

shortcomings including a)  use of arbitrary numbers (3 and 3/2) to change the weights for the terminal 

points, and b) ignoring the weighting issues in other than the four terminal values.  

Bloechl (2014) suggested another solution of end point problem in HP filter. He introduced a new 

weighting scheme for the end values of the data but not arbitrarily like Bruchez (2003). He introduced 

a loss function to be minimized (as discussed above). In order to resolve end points asymmetrical 

weighting issue of HP filter, Bloechl (2014) suggested (i) flexible scheme for number of end 

observations (k) to consider and (ii) flexible weights for end observations ( ).  

With the loss function (Equation 7) one can assess the distortion which causes the biasness at the 

terminal points’ estimates (of trend using HP filter). Bloechl (2014) developed a scheme to reduce this 

distortion: higher the loss, higher the penalization (in linear manner). Thus, Bloechl (2014) suggested 

a flexible penalization for HP filter by taking different values of   for different points in time. 

Considered a cumulative loss function:  

  λ       λ  
              (8) 

                                                           
7 Huang et al (1998) 
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Bloechl (2014) implemented his scheme by replacing the scalar λ in equation (3) with a vector λ  

while increasing λ for k values at both ends. That is  

λ        λ             λ      λ                       (9) 

With different choices of   and k for new vector    in equation (9), one can obtain different values of 

accumulated loss function. Based upon his simulation work Bloechl (2014) has given different 

choices of   and k for different values of   and for different time period. Bloechl (2014) found 

estimated loss with his suggested scheme (1.16872) lower than that for HP filter approach (1.76382).   

There are various issues in the way Bloechl (2014) attempted to address the EBP. First of all it 

considers only linear penalization to minimize the loss function in equation 8 whereas Figures 1, 2 

and 3 (Appendix B) clearly suggest possibility of nonlinear penalization to minimize the loss function 

to zero. Moreover, selecting seemingly optimal weight ( ) from amongst the arbitrarily (and thus 

exogenously) chosen values for this weight does not ensure the loss minimization.  

In the following section we propose and put to test a ‘fully’ modified HP filter which not only 

addresses these issues with ways the EPB has been attempted to address but also the issue of fixing 

the smoothing parameter across countries/series and over the time period.   

5. Fully Modified HP Filter 

We marry the endogenous lambda approach of McDermott (1997) with loss function minimization 

approach of Bloechl (2014) while suggesting some intuitive changes in his weighting scheme (we 

critically evaluated above). We contribute by suggesting an endogenous weighting scheme along with 

endogenous smoothing parameter and resolve EPB issue of HP filter. We call this fully modified 

(FMHP) filter.  

Instead of having a fixed value of smoothing parameter like in Hodrick and Prescott (1997) and (the 

starting point of) Bloechl (2014) we estimate the lambda endogenously. For this, we estimate         

(i.e., equation 3) by applying the leave-out method (as used in McDermott, 1997) with =1 as an 

initial value. For different positive values of , we estimate equation (4) and select  that gives the 

minimum value of the objective function in equation 4. We call this 
   

. By this time we have an 

endogenous smoothing parameter. Here we propose how to address EPB in the estimated trend 

corresponding to 
   

. Rather than simply following Bloechl (2014) scheme upon MHP filtering, we 

propose the following (improved) scheme to minimize the cumulative loss in equation 8: (i) use linear 

or non linear increase of penalization (whichever minimizes the cumulative loss in equation 8) to the 

terminal points, (ii) fix the value of k (=20)
8
 and (iii) endogenize the weights (for end observations) 

i.e. select   endogenously.  

Now, we explain the overall process to implement our FMHP filter’s overall procedure in the 

following:  

First, estimate         applying the leave-out method using equation 3 starting with an arbitrary value 

for  (=1); 

                                                           
8
 We find k=20 as best one (in a simulation exercise) instead of flexible value of k (as used by Bloechl, 2014). 

This makes required number of observations in a time series to be above 40 in order to apply our FMHP filter 

for smoothing purposes.  
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Second, for different values for >0, we obtain different estimates of (equation 4) and  that gives the 

minimum value of the objective function (4) is chosen as the initial smoothing parameter as in 

McDermott (1997), 
   

. 

Third, using value of  
   

 and weighting scheme below, we obtain optimal value of   and k. 

       
    

                    
    

                      ;  i=1, 2.   (9a) 

Fourth, repeat first step to re-estimate         using equation 3 but with our weighting scheme and 

optimal value of   and k from step 3; 

Fifth, using         from step 4 along with different values of   and new weighting scheme below we 

obtain different values of         and hence different values of equation (4). And  that gives the 

minimum value of the objective function (4) is chosen as the optimal smoothing parameter, 
    

. 

       
     

                     
     

                       ;  i=1, 2.   (9b) 

Sixth and last, using optimal  and new weighting scheme we estimate the trend
FMHP

 and then deduce 

the cyclical
FMHP

 component
9
. 

Before we go into implementation of our FMHP filtering upon artificial and observed data, we would 

like to present the evidence that our weighting scheme improves upon HP filter. From Figure 1a (of 

the Appendix B) we can observe that in case of our proposed weighting scheme, the weights at the 

end points are not much different from those at the middle of the data set. We can recall from Figure 1 

(of the Appendix B) that in HP filter scheme the terminal point weights are significantly large 

compared to those at middle points. We also observe that the range (maximum minus minimum 

weight) for the terminal points is significantly reduced in our scheme to 0.182 (from 0.385 of HP 

filter) and it converges to the range at middle points (Figure 1a, Appendix B).  

Moreover, our weighting scheme improves the gain function and reduces the associated (cumulative) 

loss compared to HP filtering approach. If we look at Figure 2b (in comparison with Figure 2) of 

Appendix B, we can observe that the gain function for terminal points converges to zero as we 

approach the higher frequency.  Similarly, we can see that the cumulative loss function gets very close 

to zero at end points as shown in the Figure 3b (in comparison with Figure 3) of Appendix B. In 

Figures 2b and 3b (of the Appendix B) we have used k=20 and    . We found      by 

minimizing the loss function in equation 8 with our proposed weighting scheme.  

Interestingly, these observations are true when we endogenize the weight ( ) and keep value of 

lambda fixed. We know, once we endogenize lambda our estimated cyclical component improves 

significantly (as shown in Choudhary et al, 2014). 

In the following we show the performance of FMHP filtering based upon simulation exercise (section 

5.1) and application to real world dataset (section 5.2). 

                                                           
9
 A MATLAB code for estimating the trend and cyclical components using our FMHP filter is available on 

MathWorks File Exchange website at https://www.mathworks.com/matlabcentral/fileexchange/63198-fully-

modified-hp-filter-function   

https://www.mathworks.com/matlabcentral/fileexchange/63198-fully-modified-hp-filter-function
https://www.mathworks.com/matlabcentral/fileexchange/63198-fully-modified-hp-filter-function
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5.1. Simulation 

Our simulation exercise has two stages: (i) generation of artificial series, and (ii) use of artificially 

generated series to evaluate HP, BK, CF, WAN-WED and this study’s FMHP filters. Following 

Hodrick and Prescott (1997), we know that a typical economic time series (  ) is composed of a trend 

(   ) and a cycle (  ) i.e.                                   . By choosing suitable DGP, as discussed 

below, trend and cyclical components are generated separately. These two components are then 

combined to obtain single time series. This single time series is later decomposed using each of the 

above listed filters (i.e. HP, BK, CF, WAN-WED, and FMHP filters). We compare the performance 

of these filters in extracting the cyclical part of the series. We use the root mean squared error 

(RMSE) as performance criterion. Ideally it should be zero. We actually see the abilities of these five 

filters to estimate cyclical components at end points of data series as well as in the middle in order to 

assess which filter performs the best particularly in minimizing the EPB.  

Following Harvey and Jaeger (1993), and Guay and St. Amant (2005) the trend and cyclical 

components for quarterly data can be generated as
10

 

                               (10a) 

                            (10b) 

Where             
   ,             

  . 

The data-generating process of equations 10a and 10b is chosen on the evidence that the trend of most 

observed macroeconomic series tends to follow a random walk with a drift, which could be either 

linear or nonlinear, while the cyclical series follows an AR(2) process. The DGP has general 

specification where trend part satisfies the unit root condition while cyclical part follows the 

stationary process [with                      

We also consider the change in relative importance of each component by varying the ratio of 

standard deviation,       of the disturbances in equations 10a and 10b. In order to generate the 

artificial data closer to some observations (we have) from real life data we take these ratios slightly 

different from Choudhary et.al (2014) and Guay and St. Amant (2005). We consider the following 

values of the ratio      : 10, 5, 2, 1 and 0.50.  

The various combinations of values we assume for parameters (           and the ratio of SDs in 

equations 10a and 10b are given in columns (b) to (d) in Table 1 (of the Appendix A). We have 30 

different ‘combinations of assumptions’ for generating artificial data series reported in this table. 

Since average length of annual data series of all countries (in this study) is about 50 years, so against 

each model/DGP we take 200 observations for quarterly type data set and repeat this process 1000 

times. We use different time aggregation methods to convert high frequency (quarterly) artificial data 

into low frequency (annual) data - namely systematic (every 4th value from quarterly data series), 

summing (taking sum of 4 consecutive values from quarterly series) and averaging (taking average of 

4 consecutive values from quarterly series).  

Table 2 (Appendix A) carries the results of average RMSE of cyclical components extracted from HP, 

BK, CF and FMHP filters for whole data set as well as for the middle (80% length of the series) of the 

data and end points (10% from both ends). First of all we see if there is any difference of RMSE 

between middle and terminal points of the series. In Table 2 (Appendix A) we can see that RMSE for 

                                                           
10

 Like in our earlier study (Choudhary et al, 2014) on evaluating MHP filter of McDermott (1997).  
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end points is significantly higher than the RMSE at the middle of the data set for all the filtering 

techniques used here. Hence for both quarterly and annual data series, all these filters have upward 

bias at end points of the series - for example, in case of quarterly data set the RMSE of HP filter at 

‘terminal points’ is 350% high than the RMSE at the middle. For FMHP filter this increase is 145% 

which is less than half (as compared to HP filter’s 350%).  Hence FMHP filter has smallest bias while 

HP and CF filters have higher EPB for quarterly and annual data respectively. In Table 2a (Appendix 

A) we compare RMSE of cyclical components estimated using FMHP filter and WAN-WED filtering. 

We find that our filtering approach performs better than any ad-hoc solution like extension of subject 

time series to ‘sideline’ the EPB. Thus, from Tables 2 and 2a (Appendix A) we can see that FMHP 

filter has ‘overall’ lowest RMSE as compared to other filtering methods for quarterly as well as 

annual data sets. Hence EPB is reduced significantly by using FMHP filter. 

Columns (e) to (l) in Table 1 (Appendix A) carry the results of the performance comparison of FMHP 

filter with HP filter, a band pass filter (namely, CF filter
11

) and WAN-WED filtering. In this table we 

report the percentage of the times our FMHP filter performs better than HP, WAN-WED (reported in 

parentheses) and CF (reported in square brackets) filters for each of the 30 ‘combinations of 

assumptions’/models to generate artificial data. None of HP, WAN-WED and CF filter could beat our 

FMHP filter even in a single model single time in this power comparison study.  

We now turn to real life data and compare the performance of FMHP based filtering with HP filter 

(being the most popular amongst economics researchers) to see if results from simulated study are 

robust in observed data application. 

5.2. Empirical Application 

We use annual and quarterly time series of three core macroeconomic variables namely real GDP, real 

(private) consumption and real investment. We select those 70 countries for which at least 40 annual 

observations
12

 for each of these series is available. Quarterly national income accounts being scant, 

we could find quarterly time series for income, consumption and investment for 33 countries only
13

. 

The quarterly data is seasonally adjusted. We grouped all the countries into four income categories: 

high, upper middle, lower middle and lower income (as per World Bank 2015 classification). All the 

series are transformed into (natural) logarithms before we proceed to decompose the observed time 

series.   

In the decomposition process we have seen above that the ideal filter, to address the EPB issue 

completely, is the one which minimizes the loss function to zero. In section 5.2.1 we see which of the 

HP and FMHP filters minimizes the loss
14

.  

Later in section 5.2.2 we put both the HP filter and FMHP filter to real life test to observe 

implications of using HP filter approach compared to FMHP filter for moments of detrended 

macroeconomic time series. For this purpose practice is to compare the univariate (like autoregressive 

                                                           
11

 Our overall power comparison analysis considers only one band pass filter and that is CF filter. We cannot 

workout BK filter for end point performance as it loses certain terminal observations by its construction.  
12

 Minimum number of observations required to implement our weighting scheme.  
13

 Annual data is from World Bank database, whereas quarterly data is taken from OECD dataset. Annual data 

starting (ending) point varies from 1960 to 1975 (2010 to 2014). Minimum time span analysed for annual 

(quarterly) data is 41(18) years.  
14

 For the sake of completeness the results presented in the Tables 3a and 3b (Appendix A) also report the loss 

estimated on the basis of Bloechl (2014).  
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coefficients) and multivariate (like unconditional correlation coefficients) analytics of the cyclical 

component of relevant series. 

5.2.1. Comparing the estimated loss functions 

In Table 3a (3b) of Appendix A we present the estimated loss found while decomposing real 

income
15

, consumption and investment
16

 annual (quarterly) data series of 70 (33) countries. In 

columns b to d, the fixed values of lambda [100 (1600) for annual (quarterly)] are used to estimate the 

loss function given in equation (8).  

In column b, we use fixed value of lambda and weighting scheme of Hodrick and Prescott (1997) to 

obtain loss for all countries. As we know when lambda is exogenously fixed, estimated loss is 

function of T (and fixed) lambda, the estimated loss for HP filter is independent of actual series and 

its underlying dynamics. The slight difference in estimated loss for different countries (as reported in 

column b) is only because of difference in number of observations for each of the country in the 

Tables 3a and 3b (Appendix A). However, when we apply our weighting scheme with fixed lambda 

(like in HP filter) we see the estimated loss reduces to 0.599 (0.801) compared to 1.734 (1.764) found 

while we use the weighting scheme of Hodrick and Prescott (1997) in annual (quarterly) real income 

series
17

. Hence, even if we use exogenous lambda, our scheme perform better than HP filter approach 

in addressing the EPB. We find further improvement in lowering the EPB if we apply our weighting 

scheme and use endogenous lambda as reported in columns e to f of Tables 3a and 3b. Thus FMHP 

filter of this study is best approach to minimize the EBP in HP type filtering.   

5.2.2. Moments’ Comparison 

It is common practice in literature to compare the univariate and multivariate analytics of cyclical 

component of an underlying time series extracted using the filters to be evaluated. Here we appraise 

the cyclical components of real income, consumption and investment obtained using HP filter and 

FMHP filter based upon a) volatility (standard error), persistence (autoregressive coefficient), and 

unconditional correlation coefficients of consumption and investment with income following Baxter 

and King (1999).  

For HP filter we know  is used as 100 (1600) for annual (quarterly) time series. Based on these 

exogenous values of smoothing parameter we extract the cyclical components of each of the three 

selected macroeconomic series for all the countries we study. For FMHP filter, we first estimate the 

values of  using the leave-one-out procedure (equation 4) along with new weighting scheme 

(equation 8 with endogenous ) for each of the annual as well as quarterly income, consumption and 

investment series for all the selected countries. Smoothing parameter now could be different for 

different periods of time even for the same series of a country and for end/middle points of the same 

                                                           
15

 In case of all the filters for which we compare the estimated loss.  
16

 In case of FMHP filter only. As a matter of fact when lambda is exogenously fixed, estimated loss is function 

of T (and fixed) lambda (see equation 8) only. Thus estimated loss for HP filter is independent of actual series 

and its underlying dynamics. It remains the same even if our weighting scheme is applied while using fixed 

lambda. Though our scheme will reduce the estimated loss but lambda is exogenous. Only when our scheme is 

applied to MHP filter, i.e. when lambda is endogenous, the estimated loss is function of underlying time series 

(and its dynamics). Thus in case of FMHP filter we have different estimated loss for each of the income, 

consumption and investment series.    
17

 We can see Bloechl (2014) scheme (with fixed lambda), reduces the estimates loss to some extent but not as 

largely as our scheme (with fixed lambda) as reported in columns d of Tables 3a (3b) for annual (quarterly) real 

income series 
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series
18

. Hence, it will be mistake to assume smoothing parameter to be fixed across the 

countries/series/time.  

In the following, we show moments’ implications of using fixed smoothing parameter (as in HP filter) 

compared to FMHP filtering approach of estimating the endogenous smoothing parameter while 

minimizing EPB. We estimate the standard errors and first order autoregressive coefficients (AR1) of 

the cyclical components of observed series extracted using HP and MFHP filters. We also obtain the 

unconditional correlation coefficients of detrended series for pairs of interest (consumption-income 

and investment- income). We report (the AR(1)) coefficient’s equality test (following Paternoster et 

al.,1998) and the Fisher’s Z-test for correlation coefficient’s equality (following Bundick, 1975) in 

Tables 4 and 5 (Appendix A). While comparing the individual detrended series analytics (Table 4, 

Appendix A) we observe that a) ‘on average’ the difference in AR(1) coefficients of detrended series 

using two methods (MFHP filter minus the HP filter) is positive across countries and series for annual 

data while for quarterly data this difference  is almost zero, b) on average difference in the SEs of 

detrended series obtained by these filters (MFHP minus HP filter) is also positive across series and 

countries and frequency (especially for annual data) indicating less of cyclical component is left in 

trend when we extract cycle using FMHP filter
19

, and c) the AR(1) coefficients of a cyclical part of a 

time series obtained from  two approaches are statistically significantly different from each other 

across the countries and series for annual data. While comparing the unconditional correlation 

coefficients (Table 5, Appendix A) we observe two important things. First, for annual data set, on the 

average the point estimates of cross correlation coefficients between the cyclical components 

extracted by FMHP filter of the income-consumption and income-investment pairs are higher than 

those between the cyclical components extracted using the HP filter. However, the opposite is true for 

quarterly data correlations. Second, although the point estimate difference between  pair wise  

correlation coefficients are small for both annual and quarterly data set, most of these differences are 

statistically significant.  For both annual and quarterly data, there are about 60 percent countries 

having statistically significant pair wise correlation difference. This shows that the choice of  and 

weighting scheme are also relevant for second order moments of annual series. 

6. Conclusion 

Despite its extensive use to extract cyclical component from a macroeconomic time series, end point 

bias issue of (fixed smoothing parameter based) Hodrick and Prescott (1997) filter is well documented 

in the relevant literature. EPB in the estimated business cycles keep economic managers in the dark 

about the true state of their economies.  

Bloechl (2014) observed that the reason for EPB issue is non-symmetrical weighting scheme in HP 

filtering process for significant number of terminal observations. Bloechl (2014) suggested varying 

number of end observations upon which he applied different weights (than HP filter) and found some 

reduction in EPB.   

In this study, we further the McDermott (1997) Modified HP filter of endogenous smoothing 

parameter by combining it with an intuitive weighting scheme to solve EPB in HP filtering. We 

propose to use linear or non linear increase of penalization (whichever minimizes the cumulative loss) 

to the terminal points while fixing the number of end point observations to penalize and endogenous 

‘end point observations’ weights’. We call our filtering approach a fully modified HP (FMHP) filter.  

                                                           
18

 That is why we cannot have one lambda for all the data points of a series like in HP filter and MHP filter.  
19

 Here we show how we solve the main implication of EPB highlighted in footnote 6.  
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In a power comparison study, our FMHP filter outperforms a) the conventional filters (like HP, BK 

and CF filter), and b) ad-hoc solution of EPB like wavelet analysis based filtering with extrapolated 

time series. End point performance of our FMHP filter is specifically evaluated and found best 

amongst a set of competing filtering approaches.  When we put FMHP filtering to real life test based 

detrending (of real income, consumption and investment time series of a large number of countries) 

we find that our filter significantly lowers the EPB compared to Bloechl (2014) and that it performs 

better in moments’ analytics compared to HP filter.  

With the use of better estimates of the cyclical behavior (with FMHP filtering) of their economies, 

economic managers will have better knowledge of the state of their economic dynamics and thus will 

be able to take necessary stabilization measures at right time.   
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Appendix A 

 

Table 1: Simulation Results of Performance1 Comparison of fully modified HP filter with HP, WAN-WED, and CF fitters2 

Model (   /   )  Percent of times fully modified HP filter outperforms HP, (WAN-WED
6
), [CF

7
] filters

 

________________________________________________________________________________________________________________________ 

AR Coefficients 

____________ 

(Generated as) Quarterly 

__________________________ 

Time Aggregated (Annual) 

________________________________________________________________________________________ 

First 

 (∅1) 

Second 

 (∅2) 

Linear trend
 

Non linear trend
 

Systematically 

__________________________ 

By Summing 

________________________ 

By Averaging 

_________________________ 

Linear trend
 

Non linear trend
 

Linear trend
 

Non linear trend Linear trend
 

Non linear trend
 

(a) b
3
 c

3
 d

3
 e

4
 f

4
 g

5
 h

5
 i

5
 j

5
 k

5
 l

5
 

1 10 0.9 0.01 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

2 10 1.2 -0.25 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

3 10 1.2 -0.4 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

4 10 1.2 -0.55 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

5 10 1.2 -0.75 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

6 5 0.9 0.01 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

7 5 1.2 -0.25 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

8 5 1.2 -0.4 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
9 5 1.2 -0.55 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

10 5 1.2 -0.75 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

11 2 0.9 0.01 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

12 2 1.2 -0.25   100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

13 2 1.2 -0.4 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

14 2 1.2 -0.55 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

15 2 1.2 -0.75 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

16 1 0.9 0.01 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
17 1 1.2 -0.25   100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

18 1 1.2 -0.4 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

19 1 1.2 -0.55 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

20 1 1.2 -0.75 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

21 0.5 0.9 0.01 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

22 0.5 1.2 -0.25 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

23 0.5 1.2 -0.4 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
24 0.5 1.2 -0.55 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

25 0.5 1.2 -0.75 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

26 10 0.8 0 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

27 5 0.8 0 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

28 2 0.8 0 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

29 1 0.8 0 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

30 0.5 0.8 0 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

1: Performance criterion is the root mean square error of the artificial cyclical and estimations of those artificial cyclical series. 2: HP, WAN-WED and CF denote Hodrick-Prescott, Wavelet Analysis based filtering 

(with extrapolated data) and Christiano-Fitzgerald filters.  3. Columns b-d presents model’s assumptions for generating the artificial data. 4. Columns e-f are the power of fully modified HP filter compared to HP, 
WAN-WED and CF filters for quarterly data generated by linear and non-linear models respectively. 5. Columns g to l represent the power of fully  modified HP filter compared to HP, WAN-WED and CF filters for 

time aggregated (by summing as well as averaging) annual data  generated by linear and non-linear models. 6. For WAN-WED filter, we extrapolated the underlying time series using AR(1) model. 7. For CF filter we 

use maximum length of cycle P1 =32 for quarterly and P1=8 for annual data; minimum length of cycle P2=6 for quarterly data and P2=2 for annual data. 
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Table 2: Root Mean Square Error of Cyclical component estimated by Fully Modified HP, HP, BK and CF filter 

  Average RMSE of cyclical component of 30 models 

Generated data set (full) 
Generated data set (middle values 

80%) 
Generated data set (end points 20%) 

FMHP HP BK CF FMHP HP BK CF FMHP HP BK CF 

(Generated as) Quarterly 3.0 13.0 39.9 57.1 2.3 3.8 19.9 17.3 5.6 17.1 NA 73.9 

Time 
Aggregated 

(Annual) 

Systematically 8.7 33.8 18.1 33.7 3.6 17.0 17.8 10.9 17.4 67.4 NA 72.2 

By Summing 23.3 135.1 72.6 135.9 10.1 68.4 71.3 43.5 46.3 269.4 NA 291.2 

By Averaging 5.9 33.8 18.2 34.0 2.5 17.1 17.9 10.9 11.7 67.3 NA 72.8 

Table 2a: Root Mean Square Error of Cyclical component estimated by Fully Modified & Wavelet Analysis with extrapolation (WAN WE) 

  Average RMSE of cyclical component of 30 models 

Generated data set (full) Generated data set (middle values) Generated data set (end points) 

FMHP WAN (WE) FMHP WAN (WE) FMHP WAN (WE) 

(Generated as) Quarterly 3.0 8.3 2.3 8.9 5.6 78.2 

Time 
Aggregated 

(Annual) 

Systematically 8.7 24.3 3.6 23.9 17.4 92 

By Summing 23.3 57.0 10.1 56.3 46.3 337 

By Averaging 5.9 14.5 2.5 14.4 11.7 76 
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Table 3a: Estimated Loss (Annual Data) 

 
Fixed Lambda (100) Proposed  weighting scheme with endogenous Lambda 

 
HP Filter HP (Bloechl scheme) HP (our scheme) FMHP filter FMHP filter FMHP filter 

 
Income Income Income Income Consumption Investment 

Algeria 1.735 1.260 0.626 0.545 0.532 0.560 
Australia 1.735 1.260 0.626 0.523 0.560 0.539 
Austria  1.733 1.267 0.545 0.513 0.491 0.494 
Bangladesh 1.735 1.260 0.626 0.521 0.535 0.637 
Belgium 1.733 1.267 0.545 0.506 0.507 0.468 
Benin 1.735 1.260 0.626 0.537 0.525 0.540 
Bolivia 1.735 1.260 0.626 0.586 0.567 0.533 
Botswana 1.731 1.147 0.647 0.505 0.501 0.505 
Brazil 1.735 1.260 0.626 0.561 0.565 0.536 
Burkina Faso 1.732 1.272 0.623 0.508 0.482 0.484 
Cameroon 1.735 1.260 0.626 0.576 0.534 0.606 
Canada 1.733 1.267 0.545 0.520 0.501 0.476 
Chile 1.735 1.260 0.626 0.556 0.529 0.522 
Colombia 1.735 1.260 0.626 0.522 0.529 0.580 
Congo, Rep 1.735 1.260 0.626 0.536 0.602 0.539 
Costa Rica 1.735 1.260 0.626 0.546 0.546 0.552 
Cuba 1.733 1.256 0.534 0.482 0.482 0.507 
Cyprus 1.731 1.147 0.647 0.471 0.391 0.391 
Denmark 1.733 1.267 0.545 0.492 0.522 0.470 
Dominican Republic 1.735 1.260 0.626 0.541 0.527 0.542 
Ecuador 1.735 1.260 0.626 0.561 0.541 0.537 
Egypt 1.733 1.225 0.604 0.470 0.423 0.397 
El Salvador 1.732 1.272 0.623 0.513 0.506 0.503 
Finland 1.733 1.267 0.545 0.517 0.481 0.540 
France  1.733 1.267 0.545 0.505 0.506 0.489 
Gabon 1.735 1.260 0.626 0.522 0.529 0.522 
Germany 1.733 1.267 0.545 0.477 0.472 0.504 
Greece 1.733 1.267 0.545 0.550 0.531 0.480 
Guatemala 1.735 1.260 0.626 0.584 0.582 0.526 
Honduras 1.735 1.260 0.626 0.523 0.521 0.560 
Hong Kong 1.733 1.227 0.546 0.484 0.481 0.403 
India 1.735 1.260 0.626 0.526 0.534 0.524 
Indonesia 1.735 1.260 0.626 0.550 0.530 0.522 
Iran 1.735 1.260 0.626 0.565 0.593 0.566 
Ireland 1.733 1.267 0.545 0.480 0.488 0.512 
Italy 1.733 1.267 0.545 0.477 0.476 0.474 
Japan 1.733 1.256 0.534 0.487 0.483 0.481 
Kenya 1.733 1.262 0.627 0.503 0.606 0.494 
Lesotho 1.733 1.262 0.627 0.512 0.532 0.498 
Luxembourg 1.733 1.267 0.545 0.476 0.510 0.509 
Madagascar 1.735 1.260 0.626 0.521 0.546 0.548 
Malaysia 1.735 1.260 0.626 0.529 0.620 0.560 
Malta 1.733 1.225 0.604 0.474 0.375 0.366 
Mauritania 1.735 1.260 0.626 0.528 0.521 0.560 
Mexico 1.735 1.260 0.626 0.562 0.526 0.523 
Morocco 1.734 1.278 0.623 0.522 0.510 0.541 
Netherlands 1.733 1.267 0.545 0.481 0.486 0.505 
New Zealand 1.733 1.267 0.545 0.484 0.479 0.472 
Norway  1.735 1.260 0.626 0.568 0.526 0.551 
Pakistan 1.735 1.260 0.623 0.568 0.526 0.551 
P.N. Guinea 1.733 1.256 0.534 0.489 0.487 0.457 
Peru 1.735 1.260 0.626 0.571 0.561 0.590 
Philippines 1.735 1.260 0.626 0.583 0.572 0.542 
Portugal 1.733 1.267 0.545 0.504 0.486 0.472 
Puerto Rico 1.733 1.227 0.546 0.471 0.471 0.475 
Rwanda 1.735 1.260 0.626 0.531 0.531 0.539 
Senegal 1.735 1.260 0.626 0.522 0.527 0.563 
Singapore 1.731 1.147 0.647 0.470 0.417 0.469 
South Africa 1.735 1.260 0.626 0.582 0.569 0.566 
South Korea 1.735 1.260 0.626 0.559 0.544 0.531 
Spain 1.733 1.267 0.545 0.536 0.545 0.494 
Sudan 1.735 1.260 0.626 0.525 0.521 0.557 
Sweden 1.733 1.267 0.545 0.509 0.487 0.473 
Thailand 1.735 1.260 0.626 0.552 0.521 0.529 
Togo 1.735 1.260 0.626 0.524 0.678 0.523 
Trinidad & Tobago 1.735 1.260 0.626 0.581 0.575 0.595 
Tunisia 1.734 1.278 0.623 0.508 0.497 0.502 
UK 1.733 1.267 0.545 0.516 0.492 0.510 
Uruguay 1.732 1.272 0.623 0.484 0.481 0.528 
USA 1.733 1.256 0.534 0.495 0.482 0.445 
Venezuela 1.733 1.262 0.627 0.500 0.497 0.496 
Average 1.734 1.256 0.599 0.522 0.518 0.514 
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Table 3b: Estimated Loss (Quarterly Data) 

 

Fixed Lambda (100) Proposed weighting scheme with endogenous Lambda 

 

HP Filter HP (Bloechl scheme) HP (our scheme) FMHP filter FMHP filter FMHP filter 

 

Income Income Income Income Consumption Investment 

Australia 1.762 1.618 0.818 0.829 0.881 0.815 

Austria 1.761 1.259 0.786 0.616 0.741 0.806 

Belgium  1.766 1.495 0.797 0.649 0.686 0.616 

Brazil 1.761 1.259 0.786 0.798 0.698 0.800 

Canada 1.760 1.608 0.818 0.659 0.669 0.683 

Costa Rica 1.769 1.682 0.814 0.657 0.720 0.911 

Czech Rep 1.761 1.259 0.786 0.582 0.641 0.652 

Denmark 1.766 1.495 0.797 0.547 0.608 0.571 

Estonia 1.766 1.495 0.797 0.589 0.594 0.642 

Finland 1.769 1.682 0.818 0.710 0.729 0.684 

France 1.762 1.617 0.820 0.610 0.668 0.573 

Germany 1.769 1.682 0.814 0.747 0.798 0.637 

Greece 1.766 1.495 0.797 0.685 0.694 0.696 

Hungary 1.766 1.495 0.797 0.623 0.644 0.739 

India 1.757 1.125 0.770 0.663 0.750 0.651 

Ireland 1.757 1.125 0.770 0.622 0.582 0.633 

Italy 1.761 1.259 0.786 0.661 0.709 0.677 

Korea 1.762 1.617 0.818 0.812 0.840 0.784 

Latvia 1.766 1.495 0.797 0.560 0.526 0.629 

Lithuania 1.766 1.495 0.797 0.627 0.580 0.642 

Mexico 1.768 1.629 0.810 0.741 0.741 0.819 

Netherlands 1.761 1.259 0.786 0.553 0.626 0.609 

New Zealand 1.770 1.629 0.827 0.617 0.644 0.668 

Norway 1.761 1.620 0.821 0.751 0.646 0.733 

Portugal 1.766 1.495 0.797 0.648 0.706 0.671 

Slovak Rep 1.757 1.125 0.770 0.622 0.626 0.677 

Slovenia 1.766 1.495 0.797 0.574 0.762 0.625 

South Africa 1.762 1.618 0.818 0.745 0.699 0.709 

Spain 1.766 1.495 0.797 0.590 0.637 0.609 

Sweden 1.768 1.629 0.810 0.651 0.779 0.631 

Switzerland 1.762 1.617 0.820 0.670 0.655 0.646 

UK 1.766 1.495 0.797 0.580 0.625 0.637 

US 1.766 1.495 0.797 0.544 0.566 0.539 

Average 1.764 1.480 0.801 0.653 0.681 0.679 
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Table 4: Net AR(1) Coefficients and Standard Errors 

Country Group→ High Income Upper  Middle Income Lower Middle Income Lower Income 
Series1 Y C I Y C I Y C I Y C I 

Annual Data             

Number of Countries 30   16   19   5   

Average of        2 0.23   0.20 0.24 0.22  0.27 0.24 0.23 0.26 0.22 0.27 0.28 0.30 

Average of        3 0.02 0.02 0.05 0.03  0.03 0.07 0.02 0.03 0.06 0.02 0.03 0.08 

Countries not passing Z-

test at 10% for H0 : 

        

11 11 9 7  9 6 8 10 6 3 3 2 

Quarterly Data4             
Number of Countries 28   4   1   0   

Average of         -0.02 -0.02 -0.03 0.00 0.00 0.02 -0.01 0.07 -0.00 - - - 

Average of         0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00    

Countries not passing Z-

test at 10% for H0: 

       4 

0 0 0 0 0 0 0 0 0 - - - 

Notes:  1. Y, C and I denote detrended income, consumption and investment series. 2. The average of the net difference in the AR(1) coefficients where 

superscript f and h   denote fully modified HP filter and HP filter respectively. 3. The average of the net difference of the standard deviation of detrended 

series, where    and    are standard deviation of cyclical component estimated by fully modified HP filter and HP filter respectively.4.  AR(1) coefficient 

equality tests. 

     
 

 

Table 5: Net Unconditional Correlations 

Country 

Group→ 

High Income Upper Middle Income Lower Middle Income Lower Income 

Pairs1 Y-C Y-I Y-C Y-I Y-C Y-I Y-C Y-I 
Annual Data         

Number of Countries 30  16  19  5  

Average o     
 
    2 0.04 0.03 0.02 0.02 0.10 0.06 -0.02 0.00 

Countries not passing Z-
test at 10% for H0: 

  
 
      

21 12 9 8 11 9 3 2 

Quarterly Data         

Number of Countries 28  4  1  0  

Average of    
 
     -0.04 -0.03 0.01 0.00 0.04 -0.02 - - 

Countries not passing Z-

test at 10% for H0 

  
 
     3 

18 16 2 3 0 0 - - 

Notes:  1. Y-C and Y-I denote unconditional correlations of individually detrended income-consumption and income-investment pairs. 2.  The average of 

net of the correlation coefficients    
 
     where the correlation coefficient:    and     are obtained from wavelet and modified HP filter separately. 3. 

Correlation equality tests. 
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Appendix B 
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Figure 1: Weighting Vectors of HP Filter with Lambda 100 
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Figure 1a: Weighting Vectors of our Weighting Scheme Filter with Lambda 100 
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Figure 2: Gain Function for Terminal and Middle Observations  

(Using Weighting Vector of HP Filter with Lambda=100) 
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Figure 2a: Gain Function for Terminal and Middle Observations Using our Weighting 

Scheme (with α=10 and k=20) with Lambda=100 
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Figure 3: Estimated Loss while we Use HP Filter Weighting Vector (and Lambda=100) 
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Figure 3a:Estimated Loss Using our Weighting Scheme (α=10, k=20) with Lambda=100 
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Appendix C  

The solution of the minimization problem (in equation 2 of the main body of this paper) is explained 

below in more detail [than given in Danthine and Girardian (1989)]. 
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We want to show that solution of equation (C2) is reached when 

                              

We note that B is symmetric, since 

           
 
                        

Also B is positive definite, since for any vector z: 

                                   
 

 

   

         
 

   

   

    

Since  is positive, both summation terms are non-negative. 

Since B is positive definite, it is non-singular, hence     exist and also positive definite. 

Now from equation (C2) 
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Since 2
nd

 and 3
rd

 terms are constant, only first term have unknown gt. Hence      is smallest when the 

first term is smallest. Since       is positive definite, the first term is non-negative, its smallest value is 

zero:         ,           .  

 




