Estimating Output Gap for Pakistan Economy: Structural and Statistical Approaches

S. Adnan H. A. S. Bukhari and Safdar Ullah Khan

The objective of this study is to estimate potential output vis-à-vis output gap for Pakistan’s economy. It applies six commonly-used techniques to estimate potential output and from that the output gap. The results suggest that while these estimates are not the same they nonetheless do show some degree of association among each other. Therefore, a composite output gap is calculated for 1950 to 2007 that depicts that Pakistan economy has been observing a cyclical episode of excess supply followed by excess demand. Evidence further suggests that Pakistan is currently experiencing rising demand pressures since Fiscal Year 2005 and these pressures show a high degree of correlation with inflation.

JEL Codes: C22, C53, E37
Key Words: gross domestic product, potential output, output gap

1. Introduction

Assessing macroeconomic policies and identifying a sustainable non-inflationary growth path remains one of the prime objectives of policy makers. Output gap shows transitory movements from the potential output. The estimate of output gap provides key information to judge inflationary or deflationary pressures and the cyclical position of the economy. If the actual output is greater than the potential output, it reflects that an economy is experiencing excess demand. This situation is often considered as a source of inflationary pressures and requires a reduction in aggregate demand, linked with reduced government spending or tightening of monetary policy. The reverse, which indicates excess capacity, may require easing of monetary conditions or other policies to stimulate demand. The estimation of potential output vis-à-vis output gap is therefore especially important for policy makers.

* The authors are Analysts in the Research Department. They wish to thank the Editor for his suggestions. They also thank Riaz Riazuddin, Muhammad Farooq Arby, and all the seminar participants of SBP’s Working Paper Series Forum for a lively feedback. Views expressed here are entirely those of the authors and do not necessarily represent the views of the State Bank of Pakistan. [Corresponding author: safdar.khan@sbp.org.pk]

1 In general, output gap represents the difference between the actual and the potential output or the transitory movements from the potential output, measured as a share of potential output.
The idea of “potential output” is not new, but not as well-structured in the literature as one may guess. In this backdrop, therefore should the concept of “potential” refer to the maximum achievable level of production as has been echoed in the past, or should it refer to a sustainable level of production in the sense that production can continue at this level without major constraints? The literature reveals that the potential output is the maximum possible output to the current observed one.² The literature broadly makes two distinctions on the definition of potential output [Scacciavillani and Swagel (1999, pp. 5–6)].

“In the first, more along the Keynesian tradition, the business cycle results primarily from movements in aggregate demand in relation to a slow moving level of aggregate supply. In business cycle downswings, there exist factors of production that are not fully employed... A measure of potential output is thus crucial for the setting of demand management policy—both monetary and fiscal—and represents a principal guide for economic policy... In the second approach—more along the neoclassical tradition—potential output is driven by exogenous productivity shocks to aggregate supply that determine both the long run growth trend and, to a large extent, short term fluctuations in output over the business cycle... potential output in the neoclassical framework is synonymous with the trend growth rate of actual output. The key measurement problem is thus to distinguish between permanent movements in potential output and transitory movements around potential.”

In the literature, measuring potential output and output gap is frequently connected to business cycle decomposition methods. These methods allow separating the permanent component or trend of a series from its cyclical or transitory component.³ Therefore, potential output is the trend or permanent component while output gap is the transitory or cyclical component. Pagan (2003) however points towards this practice as unrepresentative of business cycle. In fact, the potential output and output gap are never directly observable. They must be derived from some set of observable variables or determinants. Therefore, various techniques have been developed to measure potential output and output gap.⁴ Many researchers have however shown little confidence over these series after observing from different methods of estimations. This is manifested in many empirical studies showing that different methodologies and assumptions for estimating a country’s potential output and output gap may produce different

² Laxton and Tetlow (1992)
³ See, for example, Beveridge and Nelson (1981), Blanchard and Quah (1989), King et al. (1991), Hodrick and Prescott (1997), and Evans and Reichlin (1994).
⁴ See, for example, Laxton and Tetlow (1992) for a historical account.
results.\(^5\) In connection with the propositions above and for policy making estimating potential output vis-à-vis output gap with some degree of precision is nonetheless desirable.

For Pakistan no previous study has attempted to estimate its potential output and output gap. Hence, this study attempts to measure Pakistan’s potential output and output gap by applying six various methods. These are Linear trend, Hodrick-Prescott (HP filter) method, Band-Pass (BP filter) of Baxter-King method, Structural Vector Autoregressive (SVAR) method, Production Function (PF) method, and the Unobserved Component (Kalman filter) method. The results derived from a sample of 1950 to 2007 suggest that though the measures of Pakistan’s output gap are not close to each other yet they exhibit some degree of association. On the basis of these results therefore we calculate a benchmark output gap for the identification of demand/supply pressures in Pakistan economy. This estimate depicts that Pakistan economy has been observing varying episodes of excess supply and demand pressures from 1950 to 2007. The estimate also suggests that the economy is experiencing rising demand pressures since 2005.

We proceed as follow. Section 2 reviews the empirical studies. Methods of estimations and their limitations are discussed in Section 3. Empirical findings are presented and discussed in Section 4. Section 5 carries the concluding remarks.

2. Empirical Literature

The potential output and output gap generated from different techniques does not distinguish clearly into the intellectual frameworks of Keynesian and neoclassical traditions. Consequently, a wide variety of measures have been taken into account. These may be classified into the economic (production function) and the statistical (time series) approaches.

The economic approach is essentially referred to the use of a production function.\(^6\) Moreover, this approach may be applied using relatively simple Cobb-Douglas function [Scacciavillani and Swagel (1999)] to a detailed simultaneous equation model [Adams and Coe (1990)]. The statistical or time-series approaches may be used by applying the univariate and multivariate techniques.

\(^6\) This approach has widely been used; including by institutions such as the IMF [Artus (1977) and De Masi (1997)] and the OECD [Giorno et al. (1995)].
The most frequently used univariate technique is the HP filter. Similar to the other univariate methods, the HP filter utilizes information appeared only in the actual output series to derive the potential output series. Other univariate techniques for example may include the Beveridge-Nelson (1981) method, the BP filter proposed by Baxter and King (1995), and the so-called “wavelet filters” [Scacciavillani and Swagel (1999)].

Dupasquier et al. (1997) describe that these univariate techniques have however been put to criticism and questioned for their ability to appropriately distinguish between the underlying permanent and transitory components of the time series considered. In response to such like limitations of univariate techniques, a variety of multivariate methods have been proposed. For example, the multivariate extensions of the Beveridge-Nelson method (MBN), unobserved-components model, the multivariate (MV) model and the extended multivariate filter (EMV) are main developments in this regard.7

We have therefore selected a wide variety of empirical literature as a review for this study. It includes empirical evidence mostly available (such as case studies analyses) for different countries. For this purpose the literature is distinguished and presented in Appendix (Table A1).

A number of researchers in recent years have made use of multivariate, structural vector autoregressive models along with other production function models to determine potential output and output gaps. These studies may differ in specification of the techniques, in terms of data frequency selection or some other dimensions considering their results. It is observed that the empirical literature could not build a common opinion on any of the single measure of potential output and output gap for respective economies. It is because the results deduced from different measures have seldom shown similarities in the estimates. It is also observed from the empirical literature that some of the studies have just estimated the potential output by using any of the single technique but improving that technique by different methods.

For example, Filho and da Silva (2002) estimate output gap by using the extended production function approach for Brazil economy and presented the straight analysis of demand/supply pressures during 1980-2000. Similarly, the aggregate production function has been estimated by several studies [Gounder and Morling

7 The discussion may be seen in Evans and Reichlin (1994), Watson (1986), Laxton and Tetlow (1992), and Butler (1996).
Moreover, the statistical methods have also been used equally to gauge the potential output. HP filters and simple time trend methods are frequently used in studies along with other structural methods. For example, SVAR has been used by Gounder and Morling (2000), Dupasquier et al. (1999) with long-run restrictions, Gosselin and Lalonde (2002), Rennison (2003), and Menashe and Yakhin (2004) and many other studies. State-space models and the unobserved Component method are alternative names of the same method of Kalman filtering and have been used in the estimates of potential output [Gradziewicz and Kolas (2003), Kichian (1999)]. Scacciavillani and Swagel (1999) have also used wavelets filters to estimate the potential output for Israel economy. The wavelet filters are considered some kind of flexible method of estimation and it combines the linear time trend method with the HP filter method.

Despite these controversies, output gap is considered as a best option to measure the supply/demand pressures in the overall economic analysis from a policy judgment point of view. Therefore, one point agenda that emerges clearly from this discussion is that the conventional methods should be improved to make them flexible in terms of capturing more information to estimate potential output and the output gap. Furthermore, the methods that have been commonly used are linear time trends, HP filters, BP filter, Production Function, the SVAR method, and Unobserved Component methods.

3. Review of Estimation Methods

In general, the different approaches to estimating potential output are classified into some of the detrending methods: the HP filter, the BP filter by Baxter-King, and the Kalman filter (univariate, bivariate, and common permanent and cyclical components). For structural relationships approaches: the linear Time Trend method, SVAR method, and PF method.

3.1. The Linear Time Trend Method

The linear trend method is the simplest way to estimate the output gap and potential output. According to this method, it is assumed that potential output is a deterministic function of time and the output gap is a residual from the trend line.

8 This approach uses linear trend method as the optimal method considered among other trend methods, for example the polynomial trend methods up to degree 7.
It presumes that on average output is at its potential level over the sample period.\footnote{This is contrary to the “through-the-peaks” method, which suggests that potential output is the maximum possible output [see, Laxton and Tetlow (1992) for more discussion on the latter method including its weaknesses].} Thus trend in output, which represents potential output, may be estimated as:

\[
Y_t^* = \hat{\alpha}_0 + \hat{\alpha}_t \text{TREND} \quad t = 1, 2, \ldots \quad (1)
\]

Where \(Y_t^*\) is potential output and \(\hat{\alpha}_0\) and \(\hat{\alpha}_t\) are the estimated coefficients from the regression of the actual output \((Y_t)\) on time trend variable \((\text{TREND})\), and output gap \((YGAP_t)\) is obtained using:

\[
YGAP_t = Y_t - Y_t^* \quad t = 1, 2, \ldots \quad (2)
\]

One of the major shortcomings of this method is that the long-run evolution of the time series is perfectly predictable because it is deterministic. It is however argued that if the changes in economic series are a random process then the deviation of the series from any deterministic path would grow without bound [Beveridge and Nelson (1981)]. Another criticism of this method is that the estimate of the gap is found to be sensitive to the sample period used in the regression.\footnote{For example, using Australian data, de Brouwer (1998) finds that when the sample starts at the lowest point in a recession, the slope of the straight line fitting the series becomes steeper, making the gap between actual and potential output at the end of the sample smaller.} According to de Brouwer (1998), the other limitation of the above method is that the assumption that potential output grows at a constant rate often does not hold.\footnote{As income level increases over time, ceteris paribus, the potential output grows at slower rates because of diminishing marginal returns to reproducible inputs.} Since output growth can be decomposed into growth of inputs, which in turn, can be decomposed into changes in the population, labor participation, and average hours worked. It is not justified to suppose that these components are not changing over time. This is particularly valid when an economy has undergone considerable structural reforms or when there are major improvements in technology.

3.2. The Hodrick-Prescott Filter Method

The HP filter method is a simple smoothing procedure. The main assumption here is that there is prior information of that growth component varying “smoothly” over time. In particular, a given time series, say \(Y_t\) (or output), may be expressed
as the sum of a growth component or trend Y_t^* (or potential output) and a cyclical component or output gap $YGAP_t$:

$$Y_t = YGAP_t + Y_t^*$$ \hspace{1cm} t = 1, 2... \hspace{1cm} (3)$$

The measure of the smoothness of Y_t is the sum of the squares of its second difference. The average of deviations of $YGAP_t$ from Y_t^* is assumed to be near zero over a long period of time. These assumptions lead to a programming problem of finding the growth components by minimizing the following:

$$\text{Min } L = \sum_{t=1}^{T} YGAP_t^2 + \lambda \sum_{t=2}^{T} (\Delta Y_t^* - \Delta Y_{t-1}^*)^2$$ \hspace{1cm} (4)$$

The parameter λ is a positive number, which penalizes variability in the growth component series. The larger the value of λ, the smoother is the solution series. Moreover, as λ approaches infinity, the limit of the solutions for Equation (4) is the least squares of a linear time trend model. On the other hand, as the smoothing factor approaches zero, the function is minimized by eliminating the difference between actual and potential output that is making potential output equal to actual output. In most empirical works, the value of λ is 1000 for annual data.

The HP method has been used in a number of empirical studies. The popularity of this method is due to its flexibility in tracking the characteristics of the fluctuations in trend output. The advantage of the HP filter is that it renders the output gap stationary over a wide range of smoothing values and it allows the trend to change overtime.

The HP method has its weaknesses as well. First relates to the smoothing weight (λ); as to how λ affects responsive potential output to movements in actual output. For high smoothing factor, the estimate indicates output above potential, but for moderate or low smoothing, the estimate suggests output below potential. Thus, an appropriate smoothing parameter (λ) is difficult to identify.

Another weakness of the HP method is the high end-sample biases, which reflect the symmetric trending objective of the method across the whole sample and the

12 See for example, De Masi (1997), de Brouwer (1998), Scacciavillani and Swagel (1999), and Cerra and Saxena (2000).
different constraints that apply within the sample and its edges. To counter this problem, researchers use output projections to augment the observations. The reliability of measured potential output and output gap would then depend on the accuracy of the forecasts used to avoid the end-sample bias. Finally, for integrated or nearly integrated series, it is shown that an arbitrary value of smoothing parameter could lead to spurious cyclicality and an excessive smoothing of structural breaks.

3.3. Baxter-King Method using Band-Pass Filter

The second univariate approach to compute potential output vis-à-vis output gap is known as BP filter method. The methodological setup is based on the theory of spectral analysis of time series data. This method transposes time series fluctuations, which are initially represented in the time domain to fluctuations in the frequency domain. The filtered series therefore consists of a weighted average of the original time series where the weights attributed to each component of the series are determined according to the frequencies which we want to obtain. The filter is the array of weights that, when applied to the original series, produces the cyclical component of output which is also called as the spectrum density.

Following Baxter and King (1995), we apply BP filter methodology which performs a finite and symmetric bilateral moving average, imposing the same number of leads and lags and symmetry of weights. It also implies that observations in a similar position on each side of the central observation are given equal weights. The formal representation of output gap is:

\[
YGAP_t = - \sum_{i=-3}^{3} \alpha_i y_{t-i}
\]

(5)

Where \(\alpha_i \) are corresponding weights of the frequency response function. These weights are derived from the inverse fourier transformation. Since underlying phenomena used three year moving average of the series, so it loose three years of observations at the beginning and end of the sample.

3.4. Structural Vector Autoregressive Method

In this section, a well known multivariate estimation technique, called SVAR is used to develop an estimation procedure for potential output vis-à-vis output gap. The model setup extends bivariate model, originally proposed by Blanchard and
Quah (1989) to trivariate model (including variables, output, unemployment, and inflation) consistent with Bjornland et al. (2006). The basic reason of this extension is due to strong criticism on the bivariate SVAR model of Blanchard and Quah (1989). In the process of model setup, it needs to identify and incorporate structural shocks, primarily distinguishing between demand and supply shocks. This also enable us to combine features of Keynesian and neoclassical traditions into the system. With trivariate model, one can easily identify three different structural shocks: two demand and one supply. The procedure assumes that neither of demand shocks can affect the unemployment rate permanently. It imposes two initial restrictions into the system. Finally the setup also assumes that nominal demand shocks cannot affect output permanently. Therefore, total of three structural restrictions are imposed in SVAR system. Lastly, estimation procedure here follows Cesaroni (2007).

SVAR Model Setup

Consider X_t be a vector with the three endogenous variables. u_t is unemployment rate, y_t is output, and INF_t is inflation:

$$G(L)X_t = \varepsilon_t \quad \text{and} \quad \var(\varepsilon_t) = \Omega_{\mu}$$

Where, $G(L)$ is a function of lag operators and Ω_{μ} is an information set consisting of variance/covariance’s of residual vector ε_t. The vector moving average (VMA) representation of above VAR is given below:

$$\Delta X_t = H(L) * \mu_t$$

The above representation (7) can also be translated into structural VMA (SVMA):

$$\Delta X_t = A(L) * \xi_t$$

Where μ_t and ξ_t are reduced form and structural shocks, respectively. ξ_t is i.i.d. with mean zero and $\var(\xi_t) = \Omega_{\xi}$. Comparing (7) and (8), the VMA of both reduced form and structural form would give:

13 The multivariate methodology uses information from a number of variables that have a high degree of correlation with GDP, such as, unemployment and domestic inflation or money supply.

14 For further detail, see, Faust and Leeper (1997).
\[A(L) * \xi_t = H(L) * \mu_t \]

(9)

and setting the polynomial at \(L=0 \):

\[A(0) * \xi_t = H(0) * \mu_t \]

(10)

Since, \(H(0) \) is identity matrix \(\xi_t = A(0)^{-1} \mu_t \). This shows that structural shocks are related to reduced form shocks via \(A(0) \); further implying that:

\[\Omega_{\mu_t} = A(0)A(0)' \]

(11)

The above representation of \(\Omega_{\mu_t} \) gives some information about \(A(0) \); that information however is not sufficient to identify \(A(0) \) since \(\Omega_{\mu_t} \) is a covariance matrix and number of non-redundant equations is less than the number of unknowns. We need to have extra structural information to fully identify \(A(0) \) as \(A(L) = H(L)A(0) \). This implies that the functional relationship between \(A(L) \) and \(H(L) \) is related via \(A(0) \). The structural long run response to the levels of endogenous variables can be obtained by evaluating the polynomial lag operator at lag \(1 \), \(A(1) = H(1)A(0) \). The matrix \(A(1) \) can be used to identify \(A(0) \) if we know some elements of the \(A(1) \) matrix. Thus we impose some restrictions on some elements of \(A(1) \) matrix using long run information of economic structure.

The MA process can easily be defined if \(A(0) \) is identified. Now consider the three uncorrelated structural shocks as a system: \(\mu_t = [\mu_t \hspace{5pt} ^{AS}, \mu_t \hspace{5pt} ^{RD}, \mu_t \hspace{5pt} ^{ND}] \), where \(\mu_t \hspace{5pt} ^{AS} \) is an aggregate supply shock, \(\mu_t \hspace{5pt} ^{RD} \) is a real demand shock, and \(\mu_t \hspace{5pt} ^{ND} \) is the remaining demand (i.e. nominal demand) shock. The system array of long run multipliers can be defined as:

\[
\begin{bmatrix}
\Delta u \\
\Delta y \\
\text{INF} \\
\end{bmatrix} =
\begin{bmatrix}
H_{11}(1) & H_{12}(1) & H_{13}(1) \\
H_{21}(1) & H_{22}(1) & H_{23}(1) \\
H_{31}(1) & H_{32}(1) & H_{33}(1) \\
\end{bmatrix}
\begin{bmatrix}
\mu^{AS} \\
\mu^{RD} \\
\mu^{ND} \\
\end{bmatrix}
\]

(12)
Where, $H(1)=\sum_{j=0}^{\infty} H_j$ show the long run multi dimensional array of $H(L)$. Hence, one can impose restrictions in such a way that neither of the demand shocks can affect the unemployment rate permanently. This further implies that: $H_{12}(1)= H_{13}(1)=0$. In line with these restrictions, the third restriction is that nominal demand shocks cannot affect output permanently. This is defined symbolically as; $H_{23}(1)=0$. Hence three structural restrictions are imposed in SVAR system. If the structure of long run response is recursive we can exploit a type of Cholesky transformation. This involves recognizing that if $A(1)$ is recursive, than it is triangular and we can compute $A(1)$ as Cholesky decomposition of long run covariance matrix for ΔX_t. The long run covariance matrix is given by:

$$\Omega_{\Delta X_t}(1) = H(1)\Omega_{\Delta Y_t} H(1)'$$

(13)

Now $A(1)$ can be computed as Cholesky decomposition of $\Omega_{\Delta X_t}(1)$ and could be used to identify $A(0)$ that will be used to compute structural shocks. The three long run restrictions as discussed earlier are defined in Table 1. From this table one can easily visualize that output can be decomposed into two components. Cesaroni (2007) defines first component as potential output. It will consist of the accumulated supply shocks. The second component is defined as the output gap and will consist of the accumulated aggregate demand shocks.

Table 1. Structural Block Restrictions

<table>
<thead>
<tr>
<th>Dependent Block</th>
<th>Independent Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>y</td>
</tr>
<tr>
<td>μ</td>
<td>*</td>
</tr>
<tr>
<td>y</td>
<td>*</td>
</tr>
<tr>
<td>inf</td>
<td>*</td>
</tr>
</tbody>
</table>

Table 1. Structural Block Restrictions

15 Bjornland et al. (2006) defines the real demand shock as that can potentially affect output in the long run. We assume that it contributes to the output gap in the first two years (business cycle frequencies); whereas, any effect above that will contribute to developments in potential output. Assuming instead that real demand shocks can have a long run effect on the unemployment rate will not change the results.
3.5. Production Function Method

In this approach, a simple two factor Cobb-Douglas production function is used to calculate potential output vis-à-vis output gap. It models the supply side of the economy where output is determined by a production process, depending on the available technology with two input factors: labor and capital. Potential output vis-à-vis output gap is obtained as the result of the defined production function when its contributing inputs and productivity are at their sustainable long-run levels.

The formal representation of aggregate Cobb-Douglas production function is:

\[y_t = tfp_t + \alpha_l l_t + (1 - \alpha_l) k_t \]

Where, \(y \) is output, \(l \) is labor, \(k \) is capital stock, \(tfp \) is Total Factor Productivity (TFP). All variables are measured in natural logarithms. The coefficients \(\alpha_l \) and \((1 - \alpha_l) \) are the factor shares for labor and capital. Since the share of capital income is one minus the share of labor income under the assumption of constant returns to scale, the growth rate of output is decomposed into TFP growth and the weighted sum of the growth of capital and labor. To compute potential output, it is necessary to know beforehand the levels of potential factor utilization and productivity, and estimates of the parameters needed for the production function.

Following Khan (2006), for Pakistan we assume values for the factor income shares to be 0.56 for labor and 0.44 for capital. Furthermore, potential productivity is derived by using trended TFP which is the smoothed residuals of the above equation.

Potential output, \(y^* \) is then computed as:

\[y_t^* = tfp_t^* + 0.56 l_t^* + 0.44 k_t^* \]

The structural approach is simple and straightforward to compute potential output but also has some drawbacks. As supply side economy is represented as a production process with only two factors of inputs. So it suffers from omitted variable bias. Further parameter estimates of capital and labor are subject to Lucas (1976) critique.

16 This sub-section is based on Frøyland and Nymoen (2000) as followed by Bjørnland et al. (2006).
3.6. Unobserved Component Method using Kalman Filter

In empirical literature, this methodological approach is also known as dynamic factor or state space modeling approach. Since potential output is unknown, so this methodology provides us a way to decompose an observed variable into two components that are not observable, see for instance, Watson (1986). The basic notion behind this setup is that the unobservable variables can be determined in such a way that they impact the variable that can be observed. Hence this approach is labeled as unobserved component approach.

We adopt model specification consistent with Harvey (1985), Watson (1986), Clark (1987), and Vineet (2004). In this model setup output Y_t is decomposed into a trend Y^*_t and a cycle C_t. For simplicity, the trend component is assumed to follow a random walk with drift and the cyclical component is assumed to follow an AR (2) process. Thus, (natural logarithm of) output is specified as:

$$
Y_t^* = Y_t^* + C_t \\
y_t^* = \delta_{t-1} + \eta_t \\
\delta_t = \delta_{t-1} + \nu_t \\
C_t = \rho_1 C_{t-1} + \rho_2 C_{t-2} + \epsilon_t
$$

Following Kuttner (1994), we also incorporate backward looking Phillips curve with model specification (15).

$$
INF_t = INF_t^* + \phi C_{t-1} + \xi_t + \lambda_1 \xi_{t-1} + \lambda_2 \xi_{t-2} + \omega_t \\
INF^*_t = INF^*_t + \tau_t
$$

Simultaneous Equations (16) and (17) can be conveniently translated as a State-Space model, facilitating estimation of the variables by Maximum Likelihood using Kalman Filter. Further details can be found in Harvey (1993).

4. Empirical Findings

The six measures of the output gap are constructed by utilizing annual data series of capital, GDP, inflation, labor force and unemployment spanning over 1950 to 2007. The dataset is collected from published sources of both Ministry of Finance...
and State Bank of Pakistan. The results are shown in Figure 1 through Figure 1(a) to 1(f). Looking at the figures, it appears that the computed output gap could not be observed as an identical outcome of the six methods. It also appears that the volatility in terms of standard deviation and magnitude differs from method to method. Sometimes the direction (i.e. the sign of output gap values) of the results also varies diametrically by changing the method of estimation.

Through these observations, one may perceive that none of the method is reliable and perhaps there are no practical implications of output gap. These observations, however, are in line with the available literature. Literature mentions that the diversification of results of output gap with respect to different methods is not unusual and attributes it to a set of reasons. Among these reasons, it is important to note and as pointed out earlier, the potential output is not directly observable. Therefore, it depends on how it is defined and estimated. The statistical methods are sometimes quite different to the structural methods in their specification and may produce different estimates of the potential output and the output gap. Another reason for this can be limitations of these methods, illustrated under each method respectively in the preceding section.

Despite these limitations, output gap is still considered as the best measure to gauge the supply/demand pressures in the overall economic analysis from the policy judgment point of view. For this purpose, the methods of estimations (both structural and statistical) have been modified by making them either flexible or expanding them to incorporate more information for better judgment of the potential output. Such developments can be observed from the estimates, as mentioned in Section 2, of CBO, IMF, OECD, and several other central banks over time. Moreover, controversies relevant to the computation of potential output remain at their level at the end of the day.

These curiosities lead this study to estimate all commonly used methods for the estimation of potential output for Pakistan’s economy to observe demand/supply pressures over time. Hence we compare the estimates of output gap with each other through the common sample correlation and statistical summary analysis in Table 2. The volatility (standard deviation) is different between the methods, with the SVAR method being the most volatile and the Baxter-King method the least. The magnitude of the volatility also varies between the six methods with the SVAR method having the highest magnitude and Baxter-King method having the

18 Therefore, we also have presented the distribution of output gap with respect to each method in Table 4 for point to point explanation of turning points during the whole period of analysis.
least magnitude. Nonetheless, a close look at the graphs shows that the absolute trend of the results presents somewhat identical behavior of movement over time.

Figure 1. Output Gap Calculated from Different Methods

1(a): SVAR
1(b): Linear Trend
1(c): Kalman Filter
1(d): Hodrick-Prescott
1(e): Production Function
1(f): Baxter-King
Table 3 helps to recognize the periods of economy with excess or deficient characteristics over the time period of 57 years. It provides a clear picture of the turning points with reference to each method. Since the different measures depict different turning points and different degrees of slack in the economy, they also signal the need for substantially different policy responses, both in terms of the timing and magnitude.

Coming back to Table 2, the correlation coefficient shows how closely the results are associated with each other. The closest correlation appears to be between the linear Trend, HP method, and the Baxter-King filter methods. These methods are commonly known as statistical methods. Similarly, we observe the strong correlation among all of the three structural methods. These methods include the SVAR method, Production Function and Kalman filter method. There appears to be two classifications of methods comprising each of the three methods which show reasonable correlation for some meaningful analysis. Therefore, we estimate a composite of output gap for each classification taking into account the statistical and the structural methods and present the results in Figure 2. For composite output gap we adopt simple average methods of calculations. Question however arises that by this approach have we resolved the problem of authenticity of output gap for its practical implication for economic analysis? Certainly, it needs more justification or investigation for some satisfactory answer.

19This is accompanied with Figure 2 which distinguishes the economy between the years of excess capacity and deficient capacity utilization.
Table 3. Identification of Deficient/Excess Capacity, 1950-2007

<table>
<thead>
<tr>
<th>Years Identified with the Deficient Capacity</th>
<th>FY50-FY59</th>
<th>FY60-FY69</th>
<th>FY70-FY79</th>
<th>FY80-FY89</th>
<th>FY90-FY99</th>
<th>FY00-FY07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Trend</td>
<td>FY50-FY55</td>
<td>FY70</td>
<td>FY71-FY79</td>
<td>FY80-FY89</td>
<td>FY90-FY97</td>
<td></td>
</tr>
<tr>
<td>Hodrick-Prescott</td>
<td>FY50, FY51</td>
<td>FY70-FY71, FY73-FY75</td>
<td>FY80, FY82- FY84</td>
<td>FY90, FY91-FY97</td>
<td>FY05-FY07</td>
<td></td>
</tr>
<tr>
<td>Baxter-King</td>
<td>FY54-FY56, FY59</td>
<td>FY70, FY74, FY75</td>
<td>FY82, FY83, FY85-FY89</td>
<td>FY90, FY91-FY96</td>
<td>FY00</td>
<td></td>
</tr>
<tr>
<td>SVAR</td>
<td>FY53, FY54, FY59</td>
<td>FY70, FY73, FY74, FY78, FY79</td>
<td>FY80-FY83, FY85-FY88</td>
<td>FY91, FY92, FY96</td>
<td>FY04-FY07</td>
<td></td>
</tr>
<tr>
<td>Kalman Filter</td>
<td>FY59</td>
<td>FY70, FY73, FY74, FY78, FY79</td>
<td>FY80-FY83, FY85-FY88</td>
<td>FY91, FY92, FY96</td>
<td>FY00, FY04, FY05, FY07</td>
<td></td>
</tr>
<tr>
<td>Production Function</td>
<td>FY54, FY55, FY59</td>
<td>FY70, FY73, FY77, FY79</td>
<td>FY80-FY83, FY85-FY88</td>
<td>FY91, FY92, FY96</td>
<td>FY00, FY04, FY07</td>
<td></td>
</tr>
<tr>
<td>Structural Methods</td>
<td>FY59</td>
<td>FY61-FY66, FY68, FY69</td>
<td>FY70, FY73, FY74, FY78, FY79</td>
<td>FY80-FY83, FY85-FY88</td>
<td>FY91, FY92, FY96</td>
<td>FY00, FY04, FY07</td>
</tr>
<tr>
<td>Statistical Methods</td>
<td>FY54-FY56</td>
<td>FY66-69</td>
<td>FY70, FY71, FY74, FY75</td>
<td>FY82, FY83, FY85-FY89</td>
<td>FY90-FY97</td>
<td>FY06, FY07</td>
</tr>
<tr>
<td>Benchmark</td>
<td>FY51, FY54, FY59</td>
<td>FY63, FY65, FY66, FY68, FY69</td>
<td>FY70, FY73, FY74, FY78, FY79</td>
<td>FY80-FY83, FY85-FY89</td>
<td>FY90-FY92, FY94, FY96</td>
<td>FY05-FY07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Years Identified with the Excess of Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Trend</td>
</tr>
<tr>
<td>Hodrick-Prescott</td>
</tr>
<tr>
<td>Baxter-King</td>
</tr>
<tr>
<td>SVAR</td>
</tr>
<tr>
<td>Kalman Filter</td>
</tr>
<tr>
<td>Production Function</td>
</tr>
<tr>
<td>Structural Methods</td>
</tr>
<tr>
<td>Statistical Methods</td>
</tr>
<tr>
<td>Benchmark</td>
</tr>
</tbody>
</table>

S. Adnan H. A. S. Bukhari and Safdar Ullah Khan
For this purpose, we compare the degree of association between these two broader and independent categories of composite output gap with each other. We therefore compute correlation coefficient between statistical and structural methods with their corresponding composite output gaps. We observe that the independent coefficient of correlation between these two composite output gaps is substantially low at only 27 percent.

In the next step we estimate another composite output gap which can be called as the benchmark output gap of the above six methods (Figure 2). The benchmark output gap is computed by the simple average of the six different methods by bringing each method on the same scale without disturbing their dimensions. This method is adopted to avoid the bias of the benchmark output gap towards any of the extreme values of any of the method. This output gap should be representative of all the six methods in terms of its characteristics.

We therefore compare the benchmark output gap with the recently estimated two different composites of output gaps. We estimate a coefficient of correlation between the benchmark output gap and composite of statistical and structural output gaps.\(^{20}\) The benchmark output gap shows higher degree of correlation with both structural and statistical methods. It is 87 percent with structural and almost 71 percent with the statistical composite output gap. This implies that different estimates of potential output have in one way or the other some similarities in their statistical behavior.

After distinguishing this sense of association among the identified methods, we also find other statistical similarities among all of the estimates of output gaps.\(^{21}\) Thus we deduce that this benchmark output gap may be utilized to identify demand/supply pressures in the Pakistan economy.

The benchmark output gap shows a cyclical pattern of excess/deficient scenarios over time. It has depicted six different cycles of excess supply following demand pressures during the time period of 58 years. The period of FY55-FY64 can be labeled as with the excess capacity except FY63. Moreover, it turned around and

\(^{20}\) Appendix Table A2 provides a historical picture of percent annual growth of GDP and Potential GDP along with the benchmark output gap.

\(^{21}\) For instance, the mean value extracted from each of the method is with the negative sign except the one with the Kalman filter. It implies that except this method all other techniques can be placed in one cohort for analysis. It is also noted from the descriptive statistics that the minimum values are negative but with the positive standard deviations. It should also be noted that the sign (-, +) with the output gap distinguishes between supply/demand pressures and the magnitude tells about the severity of the pressure.
depicted some frequent fluctuations of demand/supply pressures during FY65-FY74 and the demand pressure is observed dominating during this time. Unlike this observation the next cycle appears with the supply pressures and persists in the second half of 1970s.

![Figure 2. Summary of Output Gaps](image-url)
Going ahead, in the decade of 1980s, the benchmark output gap reflects supply pressures throughout the decade except for FY84. In the decade of 1990s, we observe that the supply pressures were dominating in its later half as compared to demand pressures observed at the start of this decade. The supply pressures continued even in the 2000s, till FY04. Unlike the historical pattern the output gap started rising, which points to building of demand pressures in the economy since FY04 till FY07. The benchmark output gap has revealed one thing interesting and it is the shrinking of supply rise with the frequent appearance of demand pressures as evidenced since FY97 to FY07.

As a supplementary note to estimating output gap, we compute temporal cross correlation between inflation and output gap measures. The individual output gap measures however portray a relatively complex scenario by showing large variation in the degree of correlation across each other during the sample range. But as shown in Table 4, all the composites of output gap measures do reflect a degree of correlation with inflation during the sample range of 1973-07. Correlation coefficient with the negative/positive sign distinguish between supply/demand pressures in the economy. The high degree of correlation also implies that the movement of output gap may assist in the prediction of inflation pressures in the economy.

For example the movement of output gap towards zero may demonstrate the signaling of stability in inflation rate. The positive increasing output gap indicates forthcoming inflationary pressures. In other words, the evidence of demand pressures indicates the inflationary pressures in the economy. All of the composite output gap measures therefore depict demand pressures as a source of rising inflation during 1973-2007. A common benchmark of structural and statistical

<table>
<thead>
<tr>
<th>Table 4. Temporal Correlation: Inflation and Output Gap Measures, 1950-2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Trend -0.53 0.34 0.46 -0.77 -0.53 -0.77 -0.40</td>
</tr>
<tr>
<td>HP Filter -0.64 0.29 0.55 0.36 0.67 0.62 0.55</td>
</tr>
<tr>
<td>BP Filter -0.55 0.04 0.74 0.39 0.23 0.97 0.58</td>
</tr>
<tr>
<td>SVAR 0.04 -0.28 0.27 -0.02 0.04 0.74 0.26</td>
</tr>
<tr>
<td>Kalman Filter -0.26 -0.48 0.25 0.30 0.65 0.59 0.45</td>
</tr>
<tr>
<td>Production Function -0.14 -0.29 0.35 0.62 0.51 -0.34 0.28</td>
</tr>
<tr>
<td>Statistical Composite -0.37 -0.37 0.28 0.92 0.92 0.97 0.77</td>
</tr>
<tr>
<td>Structural Composite -0.33 -0.07 0.46 0.85 0.95 0.92 0.80</td>
</tr>
<tr>
<td>Benchmark -0.39 0.27 0.60 0.57 0.81 0.84 0.70</td>
</tr>
</tbody>
</table>
output gap measure has shown highest degree of correlation with inflation during
2001-07.

5. Concluding Remarks

This paper reviewed six commonly used methods and attempted to estimate potential output and output gap for Pakistan economy. These methods categorized as statistical and structural estimation techniques, include linear time trends, Hodrick-Prescott filters, Band-Pass filter, Production Function, the Structural Vector Autoregressive, and Unobserved Component methods using Kalman filter. The performance of these methods has been discussed critically in terms of its limitations and advantages as well.

The results suggest that measures of output gap produce different outcomes that are not identical to each other. But there has been some association among the results achieved from these methods. In addition, a high degree of correlation is observed within the statistical and structural methods. Therefore, all of the six methods were divided into the classification of statistical and structural to measure composite output gaps for each group. We observe a low degree of correlation between these two composite output gaps. Therefore, a benchmark output gap has been calculated by combining the outcome of each method.

Interestingly, the benchmark output gap observes reasonable coefficient of correlation with both composites output gaps of statistical and structural methods. The benchmark output gap demonstrates a cyclical episode of demand pressure followed by excess supply, implying different degree of slack in the economy over a time period. In the recent past, since FY05, it is observed that the demand pressures are overriding in Pakistan economy. As a part of these concluding remarks, a high degree of temporal cross correlation is observed between inflation and the composite measures of output gap. Furthermore, a common composite of structural and statistical output gap measure has shown highest degree of correlation with inflation during 2001-07.

As observed, the results propose a considerable caution when constructing output gaps and using them for policy analysis in developing countries such as Pakistan.
Appendix

Table A1. Empirical Literature Review

<table>
<thead>
<tr>
<th>Study</th>
<th>Empirical Approach</th>
<th>Variables</th>
<th>Data</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjørnland et al. (2005)</td>
<td>Hodrick-Prescott filter (HP), Band-pass filter (BP), Univariate "unobserved component" methods (UC) and Production function method (PF), Multivariate unobserved component method (MVUC), and SVAR model.</td>
<td>GDP, domestic inflation and unemployment, potential levels of work hours, total factor productivity, capital, unemployment gap</td>
<td>Norway (1982-2004)</td>
<td>The different methods show a consistent pattern for the output gap, but there are also important differences. Assessments of the output gap must therefore also be based on professional judgment and supplementary indicators.</td>
</tr>
<tr>
<td>Njuguna et al. (2005)</td>
<td>Hodrick-Prescott filter and the unobserved components methods, linear method, structural vector autoregression (VAR) method and production function method.</td>
<td>GDP, private consumption, time trend, labor employed, capital stock</td>
<td>Kenya (1972-2001)</td>
<td>The estimation results for the values of potential output level and its growth, and the output gap vary from method to method, however results from most methods seem to be consistent with one another, which means that a consensus may be built on how the Kenyan economy has been performing in terms of its potential capacity and growth.</td>
</tr>
<tr>
<td>Cayen and Norden (2005)</td>
<td>The univariate and multivariate methods including Deterministic Trends, Mechanical Filters, the Beveridge-Nelson Decomposition, Unobserved Component Models, Unobserved Component Models with a Phillips Curve and the Structural VAR Approach.</td>
<td>Real GDP, consumer price index and interest rate</td>
<td>Canada (1972-2003)</td>
<td>This study has assembled and analyzed a new database of real-time estimates of Canadian output. Results from a variety of measures and a broad range of output gap estimates suggest that measurement error in Canadian data may be more severe than previously thought. Further analysis of output gap forecasts and of model risk is not conclusive and results vary considerably from model to model.</td>
</tr>
<tr>
<td>Barbosa-Filho (2005)</td>
<td>It presents the basic definitions used in growth accounting and the methods used for measuring labor, capital and the output gap. Then it merges theory and econometrics in a comparative analysis of recent estimates of the potential growth rate of Brazil.</td>
<td>GDP (gross and net), intermediate consumption, labor estimates and labor productivity estimates, capital and capital productivity estimates, unemployment, inflation rate, interest rate, capacity utilization, total imports, total exports, input-output estimates, average years of schooling, per capita income, TFP estimates, and non accelerating inflation rate of capacity utilization.</td>
<td>Brazil (1947-2003)</td>
<td>The main conclusions are: (i) the annual potential growth rate of Brazil’s GDP varies substantially depending on the method and hypotheses adopted and, what is most important, potential GDP is not separable from effective GDP in the long-run; (ii) aggregate measures of potential output do not carry much information about the economy and, therefore, they should be complemented by sectoral estimates of capacity utilization to identify the bottlenecks in inter-industry flows and the corresponding demand pressures on inflation.</td>
</tr>
</tbody>
</table>
S. Adnan H. A. S. Bukhari and Safdar Ullah Khan

Grauertz and Kolasa (2005)

Two factor dynamic production function (estimated in the cointegrated VECM system)

GDP, labor and capital as inputs

Poland (1995-2002)

The development of the gaps and the analysis of their impact on inflation show the lack of any inflationary pressure from the demand side, which may be the case till the end of 2003. In view of relatively strong assumptions made during the estimation process and time relationships analysis, caution is recommended while drawing any conclusions.

Menashe and Yakhin (2004)

The production-function method and SVAR, both structural methods.

Bussiness sector product, estimates of TFP, capital input, labor input, utilization of capital, inflation rate, inflation expectations, time dummy and import prices.

Israel (1986-2001)

The results of the estimate give rise to several conclusions: (i) the annual rate of growth of potential output in the second half of the 1990s declined by about one percentage point from the rate in the first half. (ii) Estimates of the output gap including start-ups do not differ significantly from estimates excluding them. (iii) It is clear that the business cycle at the beginning of the 1990s derived mainly from supply shocks (in particular the influx of immigrants), while the recession that started in 1996 was due to demand shocks.

Cotis et al. (2003)

This study provides a critical review of variety of methods used in the literature.

Although it is difficult to give a universal ranking of the methods, the statistical methods (trend and univariate filters) seem to have more shortcomings than the economic methods (particularly, multivariate filters and production function approaches).

The benchmark output gap is estimated using the method of production function. HP filter and time varying NAIRU.

Capital, labor, TFP and domestic inflation rate.

Japan (1983-2002)

Looking at the estimated potential growth rate in Japan, the study noted that the rate stood at around 4 percent throughout the 1980s. The output gap expands when the actual growth rate falls below the potential growth rate.

Remais (2003)

The HP filter and two multivariate techniques: the Blanchard-Quah (1989) SVAR approach and the multivariate extensions of the HP filter (MVF). This study also considers an estimator that weighs a portfolio of inputs to estimate the output gap.

Core CPI inflation, GDP deflator, real exchange rate, slope of the yield curve, long-term nominal interest rates.

Canada (1983-2002)

This Study indicates that the output-gap estimates from the SVAR and the HP-based filter are in many cases complementary. Results appear quite robust to alternative realistic assumptions about the DGP. It shows that the favorable results for the combined approach at the end-of-sample are due in part to misspecification and parameter uncertainty in the SVAR. Two additional results have been reported: (i) relative to other estimation methodologies, the SVAR is surprisingly robust to violations in its identifying assumptions, and (ii) in terms of the absolute accuracy of an estimator at the end-of-sample, the costs associated with imposing an arbitrary smoothing restriction can be high.
This paper assesses the statistical reliability of different measures of the output gap - the multivariate Hodrick-Prescott Filter, the multivariate unobserved components method and the structural vector autoregressive model - in the Euro area. The results show that (i) additional economic information may be useful for the estimation of the output gap, (ii) economic interpretation may differ across different methods and within a given method (when different specifications are used), (iii) all multivariate detrending models performs less than an autoregressive process in terms of inflation prediction and (iv) multivariate UC models perform better than HPMV models in relative terms in order to reduce the filtered, smoothed uncertainty or quasi-real time estimates. However, it is difficult to conclude that a multivariate detrending method outperforms the others.

The eclectic approach is used to decompose potential output through the components of full employment labor input and average labor productivity at equilibrium. SVARs methods were applied for estimation. It shows an acceleration in the pace of potential output growth during the period 1995–99, peaking at 4.0 per cent in 1997. Currently, it hovers slightly above 3.0 per cent. The vigour observed over the course of the second half of the 1990s is attributable to a fall in the NAIRU and a notable acceleration in the pace of growth of trend productivity.

Cobb-Douglas production function is used as the basic methodology to extract the potential output finally. When comparing the growth contributions of labour, capital and TFP in the EU15 / Euro Zone over the last two decades with the experience of the US over the same period, there are striking differences.

Aggregate Production Functions

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Methodological Framework</th>
<th>Data Sources</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changy and Pelgrin (2003)</td>
<td>This paper assesses the statistical reliability of different measures of the output gap - the multivariate Hodrick-Prescott Filter, the multivariate unobserved components method and the structural vector autoregressive model - in the Euro area.</td>
<td>GDP real, inflation rate (consumer price deflare), unemployment rate, capacity utilization, relative import price and NAIRU estimates.</td>
<td>The results show that (i) additional economic information may be useful for the estimation of the output gap, (ii) economic interpretation may differ across different methods and within a given method (when different specifications are used), (iii) all multivariate detrending models performs less than an autoregressive process in terms of inflation prediction and (iv) multivariate UC models perform better than HPMV models in relative terms in order to reduce the filtered, smoothed uncertainty or quasi-real time estimates. However, it is difficult to conclude that a multivariate detrending method outperforms the others.</td>
</tr>
<tr>
<td>Gosselin and Lalonde (2002)</td>
<td>The eclectic approach is used to decompose potential output through the components of full employment labor input and average labor productivity at equilibrium. SVARs methods were applied for estimation.</td>
<td>Trend productivity, trend labor input, population, participation rate under-25 cohort trend participation rate, women’s trend participation rate, men’s trend participation rate, non-farm trend productivity.</td>
<td>It shows an acceleration in the pace of potential output growth during the period 1995–99, peaking at 4.0 per cent in 1997. Currently, it hovers slightly above 3.0 per cent. The vigour observed over the course of the second half of the 1990s is attributable to a fall in the NAIRU and a notable acceleration in the pace of growth of trend productivity.</td>
</tr>
<tr>
<td>Denis et al. (2002)</td>
<td>Cobb-Douglas production function is used as the basic methodology to extract the potential output finally.</td>
<td>GDP, population of working age, structural unemployment, investment, capital stock.</td>
<td>When comparing the growth contributions of labour, capital and TFP in the EU15 / Euro Zone over the last two decades with the experience of the US over the same period, there are striking differences.</td>
</tr>
<tr>
<td>Filho and da Silva (2002)</td>
<td>Aggregate Production Functions</td>
<td>Actual GDP, labor force, capital stock, technology, capacity utilization, natural rate of unemployment.</td>
<td>In the 1980-2000 period, most of the time, the Brazilian economy was below its potential. The years of strongest economic activity were 1980, 1986 and 1987, when the economy was above its potential, and the years of 1989 and 1997, when the output gap was nearly zero.</td>
</tr>
<tr>
<td>Methodology</td>
<td>Countries</td>
<td>Period</td>
<td>Measures</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>The HP filter, Beveridge-Nelson decomposition, Univariate unobserved components model, the structural VAR approach</td>
<td>Cerra and Saxena (2000)</td>
<td>Sweden (1971-1998)</td>
<td>GDP, GDP (Private and public), domestic inflation, unemployment, real exchange rate, relative output, relative price level, private capital stock, estimates of trend labor input, TFP estimates, NAIRU estimates, time dummies and import prices.</td>
</tr>
<tr>
<td>The production function approach and system estimates of potential output and the NAIRU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kichian (1999)</td>
<td></td>
<td>Quarterly; real output, inflation rate, expected inflation rate, nominal trade weighted exchange rate, and nominal oil prices.</td>
</tr>
<tr>
<td></td>
<td>Scutan (1971-1996)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methodologies used to estimate potential output are; i) Aggregate production function, ii) Univariate filters a)HP filter b)Running medium smoothing c)Wavelets filters, iii) Structural Vector Autoregression.</td>
<td>Scacciavillani and Swagel (1999)</td>
<td>Canada (1981-1997)</td>
<td>GDP, price level, stock of physical capital and the labor force and TFP estimates.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Israel (1986-1998)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The multivariate Beveridge-Nelson methodology (MBN), Cochrane’s methodology (CO), and the structural VAR methodology with long-run restrictions applied to output (LRRO).</td>
<td>Dupasquier et al. (1997) and (1999)</td>
<td>U.S.A. (1963-1997)</td>
<td>Quarterly GDP, real consumption comprising non-durables and services and the federal funds rate when a third variable is added, money and inflation is also used as a proxy to federal fund rate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Australia (1980-1997)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cobb-Douglas approach is used for industrial countries; univariate detrending techniques over the production function and HP filter for developing countries; and endogenous growth models for countries in transition.

GDP, labor, capital and TFP estimates

Over the medium term, potential output growth for the seven major industrial countries are projected to be in the range of 2 to 2.5 percent. The growth rate of potential output is expected to pick up slightly to 2.25 to 2.5 percent in the United Kingdom and Canada. In Italy, the growth rate of potential is expected to remain at about 2 percent, and in the United States to remain at about 2.5 percent.

CBO’s (1995) CBO uses production function approach. Real GDP, labor, capital, inflation rate

Output generally falls below potential during recessions, remains below during recoveries and early expansions, and rises above potential during late expansions.

Table A2. Real GDP, Potential GDP, and Output Gap (annual percentage change)

<table>
<thead>
<tr>
<th>Years</th>
<th>GDP</th>
<th>P.GDP</th>
<th>GAP</th>
<th>Years</th>
<th>GDP</th>
<th>P.GDP</th>
<th>GAP</th>
<th>Years</th>
<th>GDP</th>
<th>P.GDP</th>
<th>GAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY51</td>
<td>0.4</td>
<td>0.2</td>
<td>1.2</td>
<td>FY71</td>
<td>0.2</td>
<td>0.3</td>
<td>0.8</td>
<td>FY91</td>
<td>0.6</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>FY52</td>
<td>1.8</td>
<td>2.2</td>
<td>1.8</td>
<td>FY72</td>
<td>2.3</td>
<td>4.0</td>
<td>0.2</td>
<td>FY92</td>
<td>0.7</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>FY53</td>
<td>1.7</td>
<td>2.8</td>
<td>1.2</td>
<td>FY73</td>
<td>6.8</td>
<td>4.7</td>
<td>0.4</td>
<td>FY93</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>FY54</td>
<td>10.1</td>
<td>3.9</td>
<td>1.6</td>
<td>FY74</td>
<td>7.5</td>
<td>5.5</td>
<td>0.4</td>
<td>FY94</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>FY55</td>
<td>2.0</td>
<td>6.3</td>
<td>1.7</td>
<td>FY75</td>
<td>3.9</td>
<td>4.9</td>
<td>0.4</td>
<td>FY95</td>
<td>0.4</td>
<td>4.7</td>
<td>0.1</td>
</tr>
<tr>
<td>FY56</td>
<td>3.9</td>
<td>3.9</td>
<td>1.2</td>
<td>FY76</td>
<td>3.3</td>
<td>4.9</td>
<td>0.3</td>
<td>FY96</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>FY57</td>
<td>2.0</td>
<td>4.4</td>
<td>1.2</td>
<td>FY77</td>
<td>2.8</td>
<td>5.2</td>
<td>0.4</td>
<td>FY97</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>FY58</td>
<td>2.5</td>
<td>4.4</td>
<td>0.4</td>
<td>FY78</td>
<td>7.1</td>
<td>5.1</td>
<td>0.5</td>
<td>FY98</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>FY59</td>
<td>2.8</td>
<td>4.1</td>
<td>0.3</td>
<td>FY79</td>
<td>5.5</td>
<td>6.4</td>
<td>0.2</td>
<td>FY99</td>
<td>0.2</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>FY60</td>
<td>0.9</td>
<td>4.8</td>
<td>0.9</td>
<td>FY80</td>
<td>7.3</td>
<td>5.6</td>
<td>0.3</td>
<td>FY99</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>FY61</td>
<td>4.9</td>
<td>4.2</td>
<td>0.2</td>
<td>FY81</td>
<td>6.4</td>
<td>6.1</td>
<td>0.0</td>
<td>FY91</td>
<td>0.9</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>FY62</td>
<td>6.0</td>
<td>5.5</td>
<td>0.1</td>
<td>FY82</td>
<td>7.6</td>
<td>5.9</td>
<td>0.3</td>
<td>FY92</td>
<td>0.6</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>FY63</td>
<td>7.2</td>
<td>5.9</td>
<td>0.2</td>
<td>FY83</td>
<td>6.8</td>
<td>6.2</td>
<td>0.1</td>
<td>FY93</td>
<td>0.4</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>FY64</td>
<td>6.5</td>
<td>6.1</td>
<td>0.0</td>
<td>FY84</td>
<td>8.1</td>
<td>6.1</td>
<td>0.3</td>
<td>FY94</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>FY65</td>
<td>9.4</td>
<td>6.1</td>
<td>0.5</td>
<td>FY85</td>
<td>8.7</td>
<td>5.5</td>
<td>0.6</td>
<td>FY95</td>
<td>0.5</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>FY66</td>
<td>7.6</td>
<td>6.6</td>
<td>0.2</td>
<td>FY86</td>
<td>8.4</td>
<td>6.4</td>
<td>0.0</td>
<td>FY96</td>
<td>0.6</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>FY67</td>
<td>2.1</td>
<td>6.1</td>
<td>0.5</td>
<td>FY87</td>
<td>5.8</td>
<td>6.1</td>
<td>0.0</td>
<td>FY97</td>
<td>0.5</td>
<td>4.5</td>
<td>0.1</td>
</tr>
<tr>
<td>FY68</td>
<td>6.5</td>
<td>5.0</td>
<td>0.3</td>
<td>FY88</td>
<td>6.4</td>
<td>5.5</td>
<td>0.2</td>
<td>FY98</td>
<td>0.5</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>FY69</td>
<td>6.5</td>
<td>5.7</td>
<td>0.1</td>
<td>FY89</td>
<td>4.8</td>
<td>5.2</td>
<td>0.1</td>
<td>FY99</td>
<td>0.5</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>FY70</td>
<td>9.8</td>
<td>5.4</td>
<td>0.8</td>
<td>FY90</td>
<td>4.6</td>
<td>5.2</td>
<td>0.1</td>
<td>FY00</td>
<td>0.5</td>
<td>0.6</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Source: Authors’ estimate

Notes: . The real gross domestic product (GDP) is based on the constant prices of 1999-00.
 . P.GDP: Potential GDP is the average of six different methods explained in Section 6.
 . GAP: The benchmark output gap is the outcome of average of six different methods corresponding to the potential GDP. It is computed as: \[\text{GAP} = (\text{GDP} - \text{P.GDP}) / \text{P.GDP} \times 100\]
 . The numbers for output gap here may differ to those of the figures in terms of magnitude. It does not, however, change its meaning because it is computed from the annual average growth rate of GDP and Potential GDP.
References

